Fetal brain development: The role of maternal nutrition, exposures and behaviors

2015 ◽  
Vol 04 (01) ◽  
pp. 001-009 ◽  
Author(s):  
Rebecca Rothbaum ◽  
Hany Aly ◽  
An Massaro
Author(s):  
Rachel L. Leon ◽  
Imran N. Mir ◽  
Christina L. Herrera ◽  
Kavita Sharma ◽  
Catherine Y. Spong ◽  
...  

Abstract Children with congenital heart disease (CHD) are living longer due to effective medical and surgical management. However, the majority have neurodevelopmental delays or disorders. The role of the placenta in fetal brain development is unclear and is the focus of an emerging field known as neuroplacentology. In this review, we summarize neurodevelopmental outcomes in CHD and their brain imaging correlates both in utero and postnatally. We review differences in the structure and function of the placenta in pregnancies complicated by fetal CHD and introduce the concept of a placental inefficiency phenotype that occurs in severe forms of fetal CHD, characterized by a myriad of pathologies. We propose that in CHD placental dysfunction contributes to decreased fetal cerebral oxygen delivery resulting in poor brain growth, brain abnormalities, and impaired neurodevelopment. We conclude the review with key areas for future research in neuroplacentology in the fetal CHD population, including (1) differences in structure and function of the CHD placenta, (2) modifiable and nonmodifiable factors that impact the hemodynamic balance between placental and cerebral circulations, (3) interventions to improve placental function and protect brain development in utero, and (4) the role of genetic and epigenetic influences on the placenta–heart–brain connection. Impact Neuroplacentology seeks to understand placental connections to fetal brain development. In fetuses with CHD, brain growth abnormalities begin in utero. Placental microstructure as well as perfusion and function are abnormal in fetal CHD.


2014 ◽  
Vol 16 (3) ◽  
pp. 307-320 ◽  

Obesity is now epidemic worldwide. Beyond associated diseases such as diabetes, obesity is linked to neuropsychiatric disorders such as depression. Alarmingly maternal obesity and high-fat diet consumption during gestation/lactation may "program" offspring longterm for increased obesity themselves, along with increased vulnerability to mood disorders. We review the evidence that programming of brain and behavior by perinatal diet is propagated by inflammatory mechanisms, as obesity and high-fat diets are independently associated with exaggerated systemic levels of inflammatory mediators. Due to the recognized dual role of these immune molecules (eg, interleukin [IL]-6, 11-1β) in placental function and brain development, any disruption of their delicate balance with growth factors or neurotransmitters (eg, serotonin) by inflammation early in life can permanently alter the trajectory of fetal brain development. Finally, epigenetic regulation of inflammatory pathways is a likely candidate for persistent changes in metabolic and brain function as a consequence of the perinatal environment.


2008 ◽  
Vol 32 (6) ◽  
pp. 380-386 ◽  
Author(s):  
Gabriella Morreale de Escobar ◽  
Susana Ares ◽  
Pere Berbel ◽  
María Jesus Obregón ◽  
Francisco Escobar del Rey

2018 ◽  
Vol 96 (suppl_3) ◽  
pp. 80-80
Author(s):  
L Engels ◽  
M Wynn ◽  
B Smith ◽  
M Hoffman ◽  
A Jones ◽  
...  

2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Jennifer J Adibi ◽  
Xiaoshuang Xun ◽  
Yaqi Zhao ◽  
Qing Yin ◽  
Kaja LeWinn ◽  
...  

Abstract Adequate maternal thyroid hormone (TH) is necessary for fetal brain development. The role of placental human chorionic gonadotropin (hCG) in ensuring the production of TH is less well understood. The objective of the study was to evaluate 1) associations of placental hCG and its subunits, and maternal TH in the second trimester, and 2) the single and joint effects of TH and placental hormones on cognitive development and communication at ages 1 and 3 years. Fifty individuals (5%) were selected from the CANDLE (Conditions Affecting Neurocognitive Development and Early Learning) pregnancy cohort in Memphis, Tennessee, with recruitment from 2006 to 2011, to equally represent male and female fetuses. Participants were 68% Black and 32% White. Hormones measured were maternal thyroid (thyrotropin [TSH] and free thyroxine [FT4]) and placental hormones (hCG, its hyperglycosylated form [hCG-h], and free α- [hCGα] and β-subunits [hCGβ]) in maternal serum (17-28 weeks). The primary outcome measurement was the Bayley Scales of Infant and Toddler Development. All forms of hCG were negatively associated with FT4 and not associated with TSH. hCGα was associated with cognitive development at age 1 year and jointly interacted with TSH to predict cognitive development at age 3 years. This pilot study added insight into the thyrotropic actions of hCG in the second trimester, and into the significance of this mechanism for brain development. More research is warranted to elucidate differences between hCGα, hCGβ, and hCG-h in relation to TH regulation and child brain function.


Author(s):  
M.V. Medvedev, O.I. Kozlova, À.Yu. Romanova

Fetal brain was retrospectively evaluated in 418 normal fetuses at 16–28 weeks of gestation. The multiplanar mode to obtain the axial cerebral plane and measured the width of the cavum septum pellucidum (CSP) and biparietal diameter (BD). All measurements of CSP were done from as the widest diameter across both borders in an inter-to inter fashion. The CSP width is increasing at second trimester of gestation. Normal range plotted on the reference range (mean, 5th and 95th percentiles) of fetal width CSP by measuring of its size may be useful for assessment of fetal brain development in the second trimester of gestation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexis Papariello ◽  
David Taylor ◽  
Ken Soderstrom ◽  
Karen Litwa

AbstractThe endocannabinoid system (ECS) plays a complex role in the development of neural circuitry during fetal brain development. The cannabinoid receptor type 1 (CB1) controls synaptic strength at both excitatory and inhibitory synapses and thus contributes to the balance of excitatory and inhibitory signaling. Imbalances in the ratio of excitatory to inhibitory synapses have been implicated in various neuropsychiatric disorders associated with dysregulated central nervous system development including autism spectrum disorder, epilepsy, and schizophrenia. The role of CB1 in human brain development has been difficult to study but advances in induced pluripotent stem cell technology have allowed us to model the fetal brain environment. Cortical spheroids resemble the cortex of the dorsal telencephalon during mid-fetal gestation and possess functional synapses, spontaneous activity, an astrocyte population, and pseudo-laminar organization. We first characterized the ECS using STORM microscopy and observed synaptic localization of components similar to that which is observed in the fetal brain. Next, using the CB1-selective antagonist SR141716A, we observed an increase in excitatory, and to a lesser extent, inhibitory synaptogenesis as measured by confocal image analysis. Further, CB1 antagonism increased the variability of spontaneous activity within developing neural networks, as measured by microelectrode array. Overall, we have established that cortical spheroids express ECS components and are thus a useful model for exploring endocannabinoid mediation of childhood neuropsychiatric disease.


Sign in / Sign up

Export Citation Format

Share Document