scholarly journals Metformin Averts High Fat Diet-Induced Insulin Resistance and Protects Mitochondrial Function

2017 ◽  
Vol 65 (S 01) ◽  
pp. S1-S110
Author(s):  
A. Schrepper ◽  
M. Schwarzer ◽  
T. Doenst
2007 ◽  
Vol 98 (2) ◽  
pp. 264-275 ◽  
Author(s):  
Joo Sun Choi ◽  
In-Uk Koh ◽  
Myeong Ho Jung ◽  
Jihyun Song

To investigate the effects of three different conjugated linoleic acid (CLA) preparations containing different ratios of CLA isomers on insulin signalling, fatty acid oxidation and mitochondrial function, Sprague–Dawley rats were fed a high-fat diet either unsupplemented or supplemented with one of three CLA preparations at 1 % of the diet for 8 weeks. The first CLA preparation contained approximately 30 % cis-9, trans-11 (c9, t11)-CLA isomer and 40 % trans-10, cis-12 (t10, c12)-CLA isomer (CLA-mix). The other two preparations were an 80:20 mix (c9, t11-CLA-mix) or a 10:90 mix of two CLA isomers (t10, c12-CLA-mix). Insulin resistance was decreased in all three supplemented groups based on the results of homeostasis model assessment and the revised quantitative insulin-sensitivity check index. The phosphorylation of insulin receptor substrate-1 on serine decreased in the livers of all three supplemented groups, while subsequent Akt phosphorylation increased only in the t10, c12-CLA-mix group. Both the c9, t11-CLA-mix and the t10, c12-CLA-mix increased the expression of hepatic adiponectin receptors R1 and 2, which are thought to enhance insulin sensitivity and fat oxidation. The c9, t11-CLA-mix increased protein and mRNA levels of PPARα, acyl-CoA oxidase and uncoupling protein, which are involved in fatty acid oxidation and energy dissipation. The c9, t11-CLA-mix enhanced mitochondrial function and protection against oxidative stress by increasing the activities of cytochrome c oxidase, manganese-superoxide dismutase, glutathione peroxidase, and glutathione reductase and the level of GSH. In conclusion, all three CLA preparations reduced insulin resistance. Among them, the c9, t11-CLA-mix was the most effective based on the parameters reflecting insulin resistance and fat oxidation, and mitochondrial antioxidative enzyme activity in the liver.


2015 ◽  
Vol 309 (7) ◽  
pp. E670-E678 ◽  
Author(s):  
Bart Wessels ◽  
Nicole M. A. van den Broek ◽  
Jolita Ciapaite ◽  
Sander M. Houten ◽  
Ronald J. A. Wanders ◽  
...  

Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carnitine supplementation reduces high-fat diet-induced lipotoxicity, improves muscle mitochondrial function, and ameliorates insulin resistance. Wistar rats were fed either normal chow or a high-fat diet for 15 wk. One group of high-fat diet-fed rats was supplemented with 300 mg·kg−1·day−1 l-carnitine during the last 8 wk. Muscle mitochondrial function was measured in vivo by 31P magnetic resonance spectroscopy (MRS) and ex vivo by high-resolution respirometry. Muscle lipid status was determined by 1H MRS (intramyocellular lipids) and tandem mass spectrometry (acylcarnitines). High-fat diet feeding induced insulin resistance and was associated with decreases in muscle and blood free carnitine, elevated levels of muscle lipids and acylcarnitines, and an increased number of muscle mitochondria that showed an improved capacity to oxidize fat-derived substrates when tested ex vivo. This was, however, not accompanied by an increase in muscle oxidative capacity in vivo, indicating that in vivo mitochondrial function was compromised. Despite partial normalization of muscle and blood free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function, or insulin sensitivity. Carnitine insufficiency, therefore, does not play a major role in high-fat diet-induced muscle mitochondrial dysfunction in vivo.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Marcel A. Vieira-Lara ◽  
Marleen B. Dommerholt ◽  
Wenxuan Zhang ◽  
Maaike Blankestijn ◽  
Justina C. Wolters ◽  
...  

Abstract Background The skeletal muscle plays a central role in glucose homeostasis through the uptake of glucose from the extracellular medium in response to insulin. A number of factors are known to disrupt the normal response to insulin leading to the emergence of insulin resistance (IR). Advanced age and a high-fat diet are factors that increase the susceptibility to IR, with lipid accumulation in the skeletal muscle being a key driver of this phenomenon. It is debated, however, whether lipid accumulation arises due to dietary lipid overload or from a decline of mitochondrial function. To gain insights into the interplay of diet and age in the flexibility of muscle lipid and glucose handling, we combined lipidomics, proteomics, mitochondrial function analysis and computational modelling to investigate young and aged mice on a low- or high-fat diet (HFD). Results As expected, aged mice were more susceptible to IR when given a HFD than young mice. The HFD induced intramuscular lipid accumulation specifically in aged mice, including C18:0-containing ceramides and diacylglycerols. This was reflected by the mitochondrial β-oxidation capacity, which was upregulated by the HFD in young, but not in old mice. Conspicuously, most β-oxidation proteins were upregulated by the HFD in both groups, but carnitine palmitoyltransferase 1B (CPT1B) declined in aged animals. Computational modelling traced the flux control mostly to CPT1B, suggesting a CPT1B-driven loss of flexibility to the HFD with age. Finally, in old animals, glycolytic protein levels were reduced and less flexible to the diet. Conclusion We conclude that intramuscular lipid accumulation and decreased insulin sensitivity are not due to age-related mitochondrial dysfunction or nutritional overload alone, but rather to their combined effects. Moreover, we identify CPT1B as a potential target to counteract age-dependent intramuscular lipid accumulation and thereby IR.


2016 ◽  
Author(s):  
Ann-Kristin Picke ◽  
Lykke Sylow ◽  
Lisbeth L V Moller ◽  
Rasmus Kjobsted ◽  
Erik Richter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document