Carnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo

2015 ◽  
Vol 309 (7) ◽  
pp. E670-E678 ◽  
Author(s):  
Bart Wessels ◽  
Nicole M. A. van den Broek ◽  
Jolita Ciapaite ◽  
Sander M. Houten ◽  
Ronald J. A. Wanders ◽  
...  

Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carnitine supplementation reduces high-fat diet-induced lipotoxicity, improves muscle mitochondrial function, and ameliorates insulin resistance. Wistar rats were fed either normal chow or a high-fat diet for 15 wk. One group of high-fat diet-fed rats was supplemented with 300 mg·kg−1·day−1 l-carnitine during the last 8 wk. Muscle mitochondrial function was measured in vivo by 31P magnetic resonance spectroscopy (MRS) and ex vivo by high-resolution respirometry. Muscle lipid status was determined by 1H MRS (intramyocellular lipids) and tandem mass spectrometry (acylcarnitines). High-fat diet feeding induced insulin resistance and was associated with decreases in muscle and blood free carnitine, elevated levels of muscle lipids and acylcarnitines, and an increased number of muscle mitochondria that showed an improved capacity to oxidize fat-derived substrates when tested ex vivo. This was, however, not accompanied by an increase in muscle oxidative capacity in vivo, indicating that in vivo mitochondrial function was compromised. Despite partial normalization of muscle and blood free carnitine content, carnitine supplementation did not induce improvements in muscle lipid status, in vivo mitochondrial function, or insulin sensitivity. Carnitine insufficiency, therefore, does not play a major role in high-fat diet-induced muscle mitochondrial dysfunction in vivo.

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 740 ◽  
Author(s):  
Chien-Tai Hong ◽  
Kai-Yun Chen ◽  
Weu Wang ◽  
Jing-Yuan Chiu ◽  
Dean Wu ◽  
...  

Background: Insulin resistance (IR), considered a hallmark of diabetes at the cellular level, is implicated in pre-diabetes, results in type 2 diabetes, and negatively affects mitochondrial function. Diabetes is increasingly associated with enhanced risk of developing Parkinson’s disease (PD); however, the underlying mechanism remains unclear. This study investigated the probable culpability of IR in the pathogenesis of PD. Methods: Using MitoPark mice in vivo models, diabetes was induced by a high-fat diet in the in vivo models, and IR was induced by protracted pulse-stimulation with 100 nM insulin treatment of neuronal cells, in vitro to determine the molecular mechanism(s) underlying altered cellular functions in PD, including mitochondrial dysfunction and α-synuclein (SNCA) aberrant expression. Findings: We observed increased SNCA expression in the dopaminergic (DA) neurons of both the wild-type and diabetic MitoPark mice, coupled with enhanced degeneration of DA neurons in the diabetic MitoPark mice. Ex vivo, in differentiated human DA neurons, IR was associated with increased SNCA and reactive oxygen species (ROS) levels, as well as mitochondrial depolarization. Moreover, we demonstrated concomitant hyperactivation of polo-like kinase-2 (PLK2), and upregulated p-SNCA (Ser129) and proteinase K-resistant SNCA proteins level in IR SH-SY5Y cells, however the inhibition of PLK2 reversed IR-related increases in phosphorylated and total SNCA. Similarly, the overexpression of peroxisome proliferator-activated receptor-γ coactivator 1-alpha (PGC)-1α suppressed ROS production, repressed PLK2 hyperactivity, and resulted in downregulation of total and Ser129-phosphorylated SNCA in the IR SH-SY5Y cells. Conclusions: These findings demonstrate that IR-associated diabetes promotes the development and progression of PD through PLK2-mediated mitochondrial dysfunction, upregulated ROS production, and enhanced SNCA signaling, suggesting the therapeutic targetability of PLK2 and/or SNCA as potential novel disease-modifying strategies in patients with PD.


2020 ◽  
Vol 244 (2) ◽  
pp. 353-367 ◽  
Author(s):  
Jiali Liu ◽  
Yue Li ◽  
Xiaoyan Zhou ◽  
Xi Zhang ◽  
Hao Meng ◽  
...  

High-fat diet (HFD) not only induces insulin resistance in liver, but also causes autophagic imbalance and metabolic disorders, increases chronic inflammatory response and induces mitochondrial dysfunction. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) has recently emerged as an important regulator of glucose metabolism and skeletal muscle insulin action. Its activation has been involved in the improvement of hepatic and adipose insulin action. But the underlying mechanism is not fully understood. In the present study, we aimed to address the direct effects of CaMKIV in vivo and to evaluate the potential interaction of impaired insulin sensitivity and autophagic disorders in hepatic insulin resistance. Our results indicated obese mice receiving CaMKIV showed decreased blood glucose and serum insulin and improved insulin sensitivity as well as increased glucose tolerance compared with vehicle injection. Meanwhile, defective hepatic autophagy activity, impaired insulin signaling, increased inflammatory response and mitochondrial dysfunction in liver tissues which are induced by high-fat diet were also effectively alleviated by injection of CaMKIV. Consistent with these results, the addition of CaMKIV to the culture medium of BNL cl.2 hepatocytes markedly restored palmitate-induced hepatic insulin resistance and autophagic imbalance. These effects were nullified by blockade of cyclic AMP response element-binding protein (CREB), indicating the causative role of CREB in action of CaMKIV. Our findings suggested that CaMKIV restores hepatic autophagic imbalance and improves impaired insulin sensitivity via phosphorylated CREB signaling pathway, which may offer novel opportunities for treatment of obesity and diabetes.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1829 ◽  
Author(s):  
Lepore ◽  
Maggisano ◽  
Bulotta ◽  
Mignogna ◽  
Arcidiacono ◽  
...  

Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.


Mitochondrion ◽  
2010 ◽  
Vol 10 (2) ◽  
pp. 237 ◽  
Author(s):  
Sihem Boudina ◽  
Sandra Sena ◽  
Robert C. Cooksey ◽  
Deborah Jones ◽  
Donald A. McClain ◽  
...  

2007 ◽  
Vol 98 (2) ◽  
pp. 264-275 ◽  
Author(s):  
Joo Sun Choi ◽  
In-Uk Koh ◽  
Myeong Ho Jung ◽  
Jihyun Song

To investigate the effects of three different conjugated linoleic acid (CLA) preparations containing different ratios of CLA isomers on insulin signalling, fatty acid oxidation and mitochondrial function, Sprague–Dawley rats were fed a high-fat diet either unsupplemented or supplemented with one of three CLA preparations at 1 % of the diet for 8 weeks. The first CLA preparation contained approximately 30 % cis-9, trans-11 (c9, t11)-CLA isomer and 40 % trans-10, cis-12 (t10, c12)-CLA isomer (CLA-mix). The other two preparations were an 80:20 mix (c9, t11-CLA-mix) or a 10:90 mix of two CLA isomers (t10, c12-CLA-mix). Insulin resistance was decreased in all three supplemented groups based on the results of homeostasis model assessment and the revised quantitative insulin-sensitivity check index. The phosphorylation of insulin receptor substrate-1 on serine decreased in the livers of all three supplemented groups, while subsequent Akt phosphorylation increased only in the t10, c12-CLA-mix group. Both the c9, t11-CLA-mix and the t10, c12-CLA-mix increased the expression of hepatic adiponectin receptors R1 and 2, which are thought to enhance insulin sensitivity and fat oxidation. The c9, t11-CLA-mix increased protein and mRNA levels of PPARα, acyl-CoA oxidase and uncoupling protein, which are involved in fatty acid oxidation and energy dissipation. The c9, t11-CLA-mix enhanced mitochondrial function and protection against oxidative stress by increasing the activities of cytochrome c oxidase, manganese-superoxide dismutase, glutathione peroxidase, and glutathione reductase and the level of GSH. In conclusion, all three CLA preparations reduced insulin resistance. Among them, the c9, t11-CLA-mix was the most effective based on the parameters reflecting insulin resistance and fat oxidation, and mitochondrial antioxidative enzyme activity in the liver.


2010 ◽  
Vol 298 (1) ◽  
pp. G107-G116 ◽  
Author(s):  
Nicolas Lanthier ◽  
Olivier Molendi-Coste ◽  
Yves Horsmans ◽  
Nico van Rooijen ◽  
Patrice D. Cani ◽  
...  

Recruited adipose tissue macrophages contribute to chronic and low-grade inflammation causing insulin resistance in obesity. Similarly, we hypothesized here that Kupffer cells, the hepatic resident macrophages, play a pathogenic role in hepatic insulin resistance induced by a high-fat diet. Mice were fed a normal diet or high-fat diet for 3 days. Kupffer cell activation was evaluated by immunohistochemistry and quantitative RT-PCR. Insulin sensitivity was assessed in vivo by hyperinsulinemic-euglycemic clamp and insulin-activated signaling was investigated by Western blot. Liposome-encapsulated clodronate was injected intravenously to deplete macrophages prior to a short-term exposure to high-fat diet. Here, we characterized a short-term high-fat diet model in mice and demonstrated early hepatic insulin resistance and steatosis concurrent with Kupffer cell activation. We demonstrated that selective Kupffer cell depletion obtained by intravenous clodronate, without affecting adipose tissue macrophages, was sufficient to enhance insulin-dependent insulin signaling and significantly improve hepatic insulin sensitivity in vivo in this short-term high-fat diet model. Our study clearly shows that hepatic macrophage response participates to the onset of high-fat diet-induced hepatic insulin resistance and may therefore represent an attractive target for prevention and treatment of diet- and obesity-induced insulin resistance.


2012 ◽  
Vol 302 (5) ◽  
pp. E532-E539 ◽  
Author(s):  
Haihong Zong ◽  
Michal Armoni ◽  
Chava Harel ◽  
Eddy Karnieli ◽  
Jeffrey E. Pessin

Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.


2018 ◽  
Vol 239 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Rumana Yasmeen ◽  
Qiwen Shen ◽  
Aejin Lee ◽  
Jacob H Leung ◽  
Devan Kowdley ◽  
...  

Adipokine leptin regulates neuroendocrine circuits that control energy expenditure, thermogenesis and weight loss. However, canonic regulators of leptin secretion, such as insulin and malonyl CoA, do not support these processes. We hypothesize that epiregulin (EREG), a growth factor that is secreted from fibroblasts under thermogenic and cachexia conditions, induces leptin secretion associated with energy dissipation. The effects of EREG on leptin secretion were studied ex vivo, in the intra-abdominal white adipose tissue (iAb WAT) explants, as well as in vivo, in WT mice with diet-induced obesity (DIO) and in ob/ob mice. These mice were pair fed a high-fat diet and treated with intraperitoneal injections of EREG. EREG increased leptin production and secretion in a dose-dependent manner in iAb fat explants via the EGFR/MAPK pathway. After 2 weeks, the plasma leptin concentration was increased by 215% in the EREG-treated group compared to the control DIO group. EREG-treated DIO mice had an increased metabolic rate and core temperature during the active dark cycle and displayed cold-induced thermogenesis. EREG treatment reduced iAb fat mass, the major site of leptin protein production and secretion, but did not reduce the mass of the other fat depots. In the iAb fat, expression of genes supporting mitochondrial oxidation and thermogenesis was increased in EREG-treated mice vs control DIO mice. All metabolic and gene regulation effects of EREG treatment were abolished in leptin-deficient ob/ob mice. Our data revealed a new role of EREG in induction of leptin secretion leading to the energy expenditure state. EREG could be a potential target protein to regulate hypo- and hyperleptinemia, underlying metabolic and immune diseases.


Sign in / Sign up

Export Citation Format

Share Document