Diastereoselective One-Pot Tandem Synthesis of Chromenopyridodiazepinones through 1,4- and 1,6-Aza-Conjugate Additions/Heterocyclizations

Synlett ◽  
2018 ◽  
Vol 29 (07) ◽  
pp. 885-889 ◽  
Author(s):  
Oualid Talhi ◽  
Artur Silva ◽  
Abdelghani Bouchama ◽  
Ridha Hassaine ◽  
Nadia Taibi ◽  
...  

We report an efficient one-pot synthesis of a novel series of chromenopyridodiazepinone polyheterocycles by a catalyst-free nucleo­philic addition of ethane-1,2-diamine to (E,E)-3-[3-(2-hydroxyphenyl)-3-oxoprop-1-en-1-yl]-2-styrylchromones at room temperature under mild conditions. The reaction proceeds by a tandem process involving 1,4- and 1,6-aza-conjugate additions of one amino group of ethane-1,2-diamine to the α,β-unsaturated (3-oxoprop-1-en-1-yl) and the α,β,γ,δ-diunsaturated (2-styrylchromone) carbonyl system of the precursor, followed by imine condensation of the remaining amino group to generate the chromenopyridodiazepinone polyheterocycle. All compounds were characterized by means of one- and two-dimensional NMR spectroscopy and single-crystal X-ray crystallography.

2014 ◽  
Vol 10 ◽  
pp. 996-1005 ◽  
Author(s):  
G Gangadhararao ◽  
Ramesh Kotikalapudi ◽  
M Nagarjuna Reddy ◽  
K C Kumara Swamy

A range of phosphinoylindoles was prepared in one-pot from functionalized propargyl alcohols and a suitable P(III) precursor via a base-mediated reaction. The reaction proceeds via the intermediacy of allenylphosphine oxides. Similarly, phosphinoylisocoumarins were prepared from allenylphosphine oxides in a trifluoroacetic acid-mediated reaction; the latter also acts as a solvent. Interestingly, in the presence of wet trifluoroacetic acid, in addition to phosphinoylisocoumarins, phosphorus-free isocoumarins were also obtained. Key products were characterized by single crystal X-ray crystallography.


Synlett ◽  
2018 ◽  
Vol 29 (11) ◽  
pp. 1496-1501 ◽  
Author(s):  
J. Woollins ◽  
Guoxiong Hua ◽  
David Cordes ◽  
Alexandra Slawin

An efficient approach has been developed for the synthesis of new phosphorus–sulfur heterocycles by a one-pot three-component condensation reaction of a four-membered-ring thionation reagent [Lawesson’s reagent or its ferrocene analogue (2,4-diferrocenyl-1,3,2,4-diathiadiphosphetane 2,4-disulfide)], an alkane- or arenedithiol, and a dihaloalkane at room temperature in the presence of triethylamine. The simple synthesis method with mild conditions (room temperature and normal reactant concentrations) enhances further the application of the multicomponent reaction in the preparation of novel phosphorus–sulfur heterocycles. Six representative X-ray structures confirmed the formation of these macrocycles.


2018 ◽  
Vol 54 (49) ◽  
pp. 6292-6295 ◽  
Author(s):  
G. Vlahopoulou ◽  
S. Möller ◽  
J. Haak ◽  
P. Hasche ◽  
H.-J. Drexler ◽  
...  

Rhodium(iii) thiophosphinito pincer hydrido complexes were synthesised by C–H activation under exceptionally mild conditions at room temperature without additional base or irradiation and fully characterised by multinuclear NMR spectroscopy and X-ray crystallography.


2011 ◽  
Vol 83 (3) ◽  
pp. 655-665 ◽  
Author(s):  
Althea S.-K. Tsang ◽  
Paul Jensen ◽  
James M. Hook ◽  
A. Stephen K. Hashmi ◽  
Matthew H. Todd

The mechanism of our previously reported DDQ-mediated oxidative C–C bond-forming reaction is investigated. We are able to trap and characterize an iminium ion intermediate with X-ray crystallography, elemental analysis, and solid-state NMR spectroscopy; to our knowledge this is the first time this putative intermediate ion has been directly observed in such cross-dehydrogenative couplings (CDCs). The intermediate can be reacted with a range of nucleo-philes, including a malonate that is not amenable to a one-pot reaction protocol.


1995 ◽  
Vol 60 (4) ◽  
pp. 594-604 ◽  
Author(s):  
Hani D. Tabba ◽  
Nidal M. Yousef ◽  
Mohammad M. Al-Arab

Several highly substituted cyclohexane derivatives were synthesized by the one-pot condensation of chalcones and cyanoacetylurea (2 : 1) using sodium alkoxide in anhydrous alcohol at room temperature. The structure of the reaction products was established by infrared, 1H and 13C NMR spectroscopy as well as by their elemental analysis. Single crystal X-ray crystallography shows the presence of the cyclohexane moiety.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


2020 ◽  
Vol 75 (9-10) ◽  
pp. 851-857
Author(s):  
Chong Chen ◽  
Fule Wu ◽  
Jiao Ji ◽  
Ai-Quan Jia ◽  
Qian-Feng Zhang

AbstractTreatment of [(η6-p-cymene)RuCl2]2 with one equivalent of chlorodiphenylphosphine in tetrahydrofuran at reflux afforded a neutral complex [(η6-p-cymene)RuCl2(κ1-P-PPh2OH)] (1). Similarly, the reaction of [Ru(bpy)2Cl2·2H2O] (bpy = 2,2′-bipyridine) and chlorodiphenylphosphine in methanol gave a cationic complex [Ru(bpy)2Cl(κ1-P-PPh2OCH3)](PF6) (2), while treatment of [RuCl2(PPh3)3] with [2-(C5H4N)CH=N(CH2)2N(CH3)2] (L1) in tetrahydrofuran at room temperature afforded a ruthenium(II) complex [Ru(PPh3)Cl2(κ3-N,N,N-L1)] (3). Interaction of the chloro-bridged complex [Ru(CO)2Cl2]n with one equivalent of [Ph2P(o-C6H4)CH=N(CH2)2N(CH3)2] (L2) led to the isolation of [Ru(CO)Cl2(κ3-P,N,N-L2)] (4). The molecular structures of the ruthenium(II) complexes 1–4 have been determined by single-crystal X-ray crystallography. The properties of the ruthenium(II) complex 4 as a hydrogenation catalyst for acetophenone were also tested.


Synthesis ◽  
2021 ◽  
Author(s):  
Muhammad Syafiq Bin Shahari ◽  
Ahmad Junaid ◽  
Edward R. T. Tiekink ◽  
Anton V. Dolzhenko

A new method for the fast synthesis of diverse 4-aryl-6-cycloamino-1,3,5-triazin-2-amines was developed. The synthesis is performed under microwave irradiation in a one-pot manner from cyanoguanidine, aromatic aldehydes, and cyclic amines. Their three-component reaction in the presence of hydrochloric acid produced dihydrotriazines, which were then converted (without isolation) to the targeted compounds via aromatic dehydrogenation in the presence of alkali. The reaction tolerated various aromatic aldehydes (including heterocyclic) and cyclic amines. Crystal structures of two representative 4-aryl-6-morpholino-1,3,5-triazin-2-amines were established by X-ray crystallography. The results of preliminary biological screening identified potent antileukemic activity for 6-(3,4-dihydroisoquinolin-2(1<i>H</i>)-yl)-4-phenyl-1,3,5-triazin-2-amine.


1995 ◽  
Vol 73 (7) ◽  
pp. 1126-1134 ◽  
Author(s):  
Michel Dionne ◽  
Shoukang Hao ◽  
Sandro Gambarotta

The synthesis and characterization of a new series of mono-, di-, and trinuclear Cr(II) borohydride compounds is described. The reaction of CrCl2(TMEDA) with two equivalents of NaBH4 afforded the thermally unstable (TMEDA)Cr(BH4)2 (1), which was converted by treatment with pyridine into the octahedral monomeric (Py)4Cr(BH4)2 (2). The reaction proceeds via formation of an intermediate trinuclear complex {[(TMEDA)(Py)Cr(η2-BH4)]2[(Py)2Cr(η2-BH4)2]}(µ,η1-BH4)2 (3), which was isolated and characterized by X-ray crystallography. Reaction of 1 and 2 with both CO2 and RN=C=NR (R = Cy, iPr) afforded hydride insertion and formation of the corresponding diamagnetic lantern-type Cr(II) formate (HCO2)4Cr2Py2 (4) and formamidinate compounds [RNC(H)NR]2Cr2(µ-BH)4 (R = Cy (5a), iPr (5b)), respectively, with supershort Cr—Cr quadruple bonds. The structures of 1, 2, 3, and 5b were elucidated by X-ray analysis. Crystal data are as follows. 1: C6H24N2B2Cr, monoclinic, Cc, a = 8.517(2) Å, b = 15.921(5) Å, c = 9.624(2) Å, β = 115.59(1)°, Z = 4, R = 0.022, Rw = 0.029; 2: C28H44N4B2O2Cr, monoclinic, P21/n, a = 12.021(1) Å, b = 15.555(1) Å, c = 15.723(1) Å, β = 90.13(2)°, Z = 4, R = 0.074, Rw = 0.086; 3: C32H76N8B6Cr3, monoclinic, P21/n, a = 8.515(1) Å, b = 14.525(1) Å, c = 18.286(2) Å, β = 91.38(1)°, Z = 2, R = 0.051, Rw = 0.060; 5b: C21H49N6BCr2, monoclinic, C2/c, a = 17.000(1) Å, b = 9.033(1) Å, c = 19.160(1) Å, β = 105.579(9)°, Z = 4, R = 0.069, Rw = 0.078. Keywords: divalent chromium, borohydride, Cr—Cr quadruple bond.


2013 ◽  
Vol 11 (7) ◽  
pp. 1225-1238
Author(s):  
Iliana Medina-Ramírez ◽  
Cynthia Floyd ◽  
Joel Mague ◽  
Mark Fink

AbstractThe reaction of R3M (M=Ga, In) with HESiR′3 (E=O, S; R′3=Ph3, iPr3, Et3, tBuMe2) leads to the formation of (Me2GaOSiPh3)2(1); (Me2GaOSitBuMe2)2(2); (Me2GaOSiEt3)2(3); (Me2InOSiPh3)2(4); (Me2InOSitBuMe2)2(5); (Me2InOSiEt3)2(6); (Me2GaSSiPh3)2(7); (Et2GaSSiPh3)2(8); (Me2GaSSiiPr3)2(9); (Et2GaSSiiPr3)2(10); (Me2InSSiPh3)3(11); (Me2InSSiiPr3)n(12), in high yields at room temperature. The compounds have been characterized by multinuclear NMR and in most cases by X-ray crystallography. The molecular structures of (1), (4), (7) and (8) have been determined. Compounds (3), (6) and (10) are liquids at room temperature. In the solid state, (1), (4), (7) and (9) are dimers with central core of the dimer being composed of a M2E2 four-membered ring. VT-NMR studies of (7) show facile redistribution between four- and six-membered rings in solution. The thermal decomposition of (1)–(12) was examined by TGA and range from 200 to 350°C. Bulk pyrolysis of (1) and (2) led to the formation of Ga2O3; (4) and (5) In metal; (7)–(10) GaS and (11)–(12) InS powders, respectively.


Sign in / Sign up

Export Citation Format

Share Document