scholarly journals Triflic Anhydride Promoted Synthesis of Primary Amides and their Conversion into Nitriles

SynOpen ◽  
2018 ◽  
Vol 02 (02) ◽  
pp. 0180-0191
Author(s):  
Anil Rana ◽  
Varun Kumar ◽  
Lata Tiwari ◽  
Anamika Thakur ◽  
Chhuttan Meena ◽  
...  

A facile, two-pot conversion of carboxylic acids into the corresponding nitriles has been developed using triflic anhydride as a promoter and aqueous NH4OH as a source of nitrogen. The methodology involves synthesis of primary amides from carboxylic acids as the key first step using triflic anhydride and aqueous NH4OH as a source of ­nitrogen. Triflic anhydride is also found to be an excellent reagent for conversion of primary amides into nitriles, affording high yields with considerable chemoselectivity and functional group tolerance. In spite of the mild reaction conditions and broad substrate scope for the two-step conversions, all attempts for one-pot domino conversion of acids into nitriles exhibited limited success because of poor yields.

Synlett ◽  
2018 ◽  
Vol 29 (06) ◽  
pp. 779-784 ◽  
Author(s):  
Guoliang Chen ◽  
Fangyu Du ◽  
Qifan Zhou ◽  
Dongdong Liu ◽  
Ting Fang ◽  
...  

The aromatic dimers play a significant role in many aspects. Herein, we report a simple palladium-carbon catalyst that is highly effective for the dimerization of brominated aromatic compounds under mild conditions using abundant brominated aromatic compounds, bis(pinacolate)diboron and potassium acetate by a ‘one-pot’ method. This process, which we believe proceeds via a Suzuki–Miyaura cross-coupling reaction mechanism, allows access to a variety of aromatic compounds under mild reaction conditions and has a good functional group tolerance with moderate to high yields.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bajivali Shaik ◽  
Mohan Seelam ◽  
Ramana Tamminana ◽  
Prasad Rao Kammela

Abstract: Environmentally benign syntheses of One-pot sequential reactions of benzoyl chloride with amines followed by the treatment of molecular I2 reagent under basic conditions provide benzoyl tetrazoles and guanidines in moderate to excel-lent yields. This one-pot synthesis has several advantages such as mild reaction conditions, short reaction time, convenient workup, high yields, using cheap and readily available reagent molecular Iodine. In addition, functional group tolerance has been explored


2020 ◽  
Vol 7 (3) ◽  
pp. 242-247
Author(s):  
Habtamu Gelaw Mekonnen ◽  
Debasis Sahoo ◽  
Samaresh Jana ◽  
Sanjoy Kumar Maji

Background: Due to the ubiquitous nature of the ketone functionality, it is considered an important functional group in organic chemistry. Hence, the synthesis of ketones from readily available starting materials is an important chemical transformation in organic synthesis. Consequently, several research efforts have been reported in the literature for the transformation of carboxylic acids to ketones in a one-pot synthesis. However, some of the procedures have limitations, such as long reaction times, harsh reaction conditions, and usage of expensive metal catalysts. Thus, a simple and convenient one-pot conversion of carboxylic acids to ketones remains desirable. Objective: We intended to develop a simple and convenient one-pot methodology for the synthesis of ketones from carboxylic acids. Our objective was to build up a carboxylic acid-based chemical template where various types of organometallic reagents can interact to produce the desired ketone. Methods: In this procedure, a carboxylic acid was converted to a mixed anhydride using mesyl chloride in the presence of a base. This mixed anhydride was then reacted with a suitable organometallic reagent at -20°C to obtain the desired ketone. The reaction was performed in a one-pot fashion. Results: Under the optimized reaction conditions, various aromatic and heteroaromatic carboxylic acids were converted to the corresponding ketones using organolithium and organomagnesium reagents with short reaction times. Moderate to good yields of the desired ketones were observed in many of these transformations. Conclusion: A simple and convenient one-pot method for the conversion of carboxylic acids to ketones has been reported. Specifically, various aromatic and `heteroaromatic carboxylic acids have been converted to the corresponding ketones in moderate to good yields. Organomagnesium and organolithium reagents were used as nucleophiles for this reaction.


2018 ◽  
Vol 21 (4) ◽  
pp. 298-301 ◽  
Author(s):  
Ghasem Marandi

Aim and Objective: The reaction of cyclohexylisocyanide and 2-aminopyridine-3- carboxylic acid in the presence of benzaldehyde derivatives in ethanol led to 3-(cyclohexylamino)-2- arylimidazo[1,2-a]pyridine-8-carboxylic acids in high yields. In a three component condensation reaction, isocyanide reacts with 2-aminopyridine-3-carboxylic acid and aromatic aldehydes without any prior activation. Material and Methods: The synthesized products have stable structures which have been characterized by IR, 1H, 13C and Mass spectroscopy as well as CHN-O analysis. Results: In continuation of our attempts to develop simple one-pot routes for the synthesis of 3- (cyclohexylamino)-2-arylimidazo[1,2-a]pyridine-8-carboxylic acids, aromatic aldehydes with divers substituted show a high performance. Conclusion: In conclusion, this study introduces the art of combinatorial chemistry using a simple one-pot procedure for the synthesis of new materials which are interesting compounds in medicinal and biological sciences.


2020 ◽  
Vol 17 ◽  
Author(s):  
Visarapu Malathi ◽  
Pedavenkatagari Narayana Reddy ◽  
Pannala Padmaja

Abstract:: An efficient method has been developed for the synthesis of new pyrano[3,2-c] and pyrano[3,2-a]carbazole de-rivatives via a three component reaction of 4-hydroxycarbazole or 2-hydroxycarbazole, isocyanides, and dialkylacetylenedi-carboxylates. Noteworthy features of this protocol include mild reaction conditions, catalyst-free, high atom-economy and high yields.


Synthesis ◽  
2019 ◽  
Vol 52 (05) ◽  
pp. 744-754
Author(s):  
Yoona Song ◽  
Soyun Lee ◽  
Palash Dutta ◽  
Jae-Sang Ryu

A copper(I)-mediated tandem three-component reaction using alkynes, azides, allyl iodides, CuI and NaNH2 is developed. The reactions proceed smoothly at room temperature to afford 5-allyl-1,2,3-triazoles, which can be further converted into 1,2,3-triazole-fused tricyclic scaffolds. This method features an efficient one-pot cascade route using commercial alkynes and affords the corresponding 5-allyl-1,2,3-triazoles with high yields and good selectivity under mild reaction conditions.


Synthesis ◽  
2019 ◽  
Vol 51 (08) ◽  
pp. 1803-1808 ◽  
Author(s):  
Yan Zhang ◽  
Zhe-Yao Hu ◽  
Xin-Chang Li ◽  
Xun-Xiang Guo

A novel decarboxylative N-arylation of indole-2-carboxylic acids with aryl halides is developed. The reaction proceeds efficiently in the presence of Cu2O as the catalyst to give the corresponding N-aryl indoles in high yields. This synthetic method shows good functional group tolerance and offers an alternative route to construct N-aryl indoles.


2012 ◽  
Vol 77 (9) ◽  
pp. 1175-1180 ◽  
Author(s):  
Nahid Shajari ◽  
Reza Kazemizadeh ◽  
Ali Ramazani

Four-component reaction of cyclobutanone, dibenzylamine and (Nisocyanimino) triphenylphosphorane in the presence of aromatic carboxylic acids proceed smoothly at room temperature and under neutral conditions to afford N,N-dibenzyl-N-{1-[5-(3-aryl)-1,3,4-oxadiazol-2-yl]cyclobutyl}amine derivatives in high yields.


2005 ◽  
Vol 2005 (9) ◽  
pp. 600-602 ◽  
Author(s):  
Yu-Ling Li ◽  
Mei-Mei Zhang ◽  
Xiang-Shan Wang ◽  
Da-Qing Shi ◽  
Shu-Jiang Tu ◽  
...  

In this paper the preparation of 3,3,6,6-tetramethyl-9-aryl-1,2,3,4,5,6,7,8,9,10- decahydroacridin-1,8-dione derivatives from aromatic aldehydes, 5,5-dimethyl-1,3- cyclohexanedione and ammonium acetate in ionic liquids [bmim+][BF4-] is described. This new method has the advantages of easier work-up, milder reaction conditions, high yields and an environmentally benign procedure compared with other methods.


2012 ◽  
Vol 77 (4) ◽  
pp. 407-413 ◽  
Author(s):  
Khalil Tabatabaeian ◽  
Hannaneh Heidari ◽  
Alireza Khorshidi ◽  
Manouchehr Mamaghani ◽  
Nosrat Mahmoodi

The one-pot domino Knoevenagel-type condensation/Michael reaction of aromatic, heteroaromatic and aliphatic aldehydes with 4-hydroxycoumarin in aqueous media in the presence of ruthenium salt as homogeneous catalyst was investigated. It was found that 5 mol% of RuCl3.nH2O catalyzes biscoumarin synthesis in high yields (70-95%) under optimised, mild, green and environmentally benign reaction conditions in short times (25-35min).


Sign in / Sign up

Export Citation Format

Share Document