scholarly journals Effect of Blood Group on Ultrahigh Frequency Auditory Sensitivity

2017 ◽  
Vol 22 (04) ◽  
pp. 364-367 ◽  
Author(s):  
Prashanth Prabhu ◽  
Akhila Chandrashekhar ◽  
Janani Cariappa ◽  
Nayanika Ghosh

Introduction Individuals with blood group O are reported to have reduced otoacoustic emissions (OAEs) compared with individuals with different blood groups. Objective The present study attempted to determine if the blood group has any effect on high-frequency auditory sensitivity using ultrahigh-frequency audiometry and ultrahigh-frequency distortion product otoacoustic emissions (DPOAEs). Methods High-frequency thresholds and high-frequency DPOAEs were measured in 60 individuals with normal hearing and different blood groups. Results The results of the study showed that there was a significant reduction in DPOAE amplitude for individuals with blood group O compared with individuals with other blood groups. However, there was no significant difference in ultrahigh-frequency thresholds across the blood groups. Conclusion This reduction in OAE amplitude may be attributed to a lower number of healthy outer hair cells in individuals with blood group O. Further studies on larger groups of individuals are essential for a better generalization of the results.

2017 ◽  
Vol 96 (6) ◽  
pp. E12-E17 ◽  
Author(s):  
Aylin Göl ◽  
Engin Şengül ◽  
Beyhan Yılmaz ◽  
Fazıl Emre Özkurt ◽  
Mehmet Akdağ ◽  
...  

The purpose of this experimental study was to investigate the protective role of intratympanically administered dexamethasone on the inner ears of rats that were exposed to streptomycin ototoxicity. Twenty-four adult Wistar albino rats were separated into 4 groups: Group 1 (only streptomycin), Group 2 (only intratympanic dexamethasone), Group 3 (streptomycin and intratympanic dexamethasone), and Group 4 (streptomycin and intratympanic saline). All rats were evaluated with distortion product otoacoustic emissions (DPOAE) tests before the start of treatment and on the day it ended. On the 45th day, after the final DPOAE tests, animals of all groups were sacrificed under general anesthesia. The differences between the amplitudes of DPOAE results were determined, and hearing results were statistically analyzed. Also, the cochleas of each rat were histopathologically evaluated under a light microscope with hematoxylin and eosin staining. In the intratympanic dexamethasone group it was observed that cochlear hair cells were mostly protected. No significant difference was seen between the DPOAE results before and after treatment (p > 0.05). On the other hand, loss was observed in the hearing functions and hair cells of the rats that received streptomycin and streptomycin plus intratympanic saline (p < 0.05). In the streptomycin plus intratympanic dexamethasone group, the cochlear hair cells were partially protected. A significant difference was observed when the DPOAE results (DP-grams) of the streptomycin plus intratypmanic dexamethasone group were compared to those of the streptomycin plus intratympanic saline group (p < 0.05). After the experimental study, ototoxic effects of the administration of streptomycin and intratympanic dexamethasone were observed on the rats’ cochlear hair cells. We conclude that intratympanic dexamethasone has protective effects against this cochlear damage in rats.


2020 ◽  
Author(s):  
C. Elliott Strimbu ◽  
Yi Wang ◽  
Elizabeth S. Olson

ABSTRACTThe mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC) generated forces driven in part by the endocochlear potential (EP), the ~ +80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the EP in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea’s organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions (DPOAE) were monitored at the same times. Following the injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost their BF peak and showed low-pass responses, but retained nonlinearity, indicating that OHC electromotility was still operational. Thus, while electromotility is presumably necessary for amplification, its presence is not sufficient for amplification. The BF peak recovered nearly fully within 2 hours, along with a non-monotonic DPOAE recovery that suggests that physical shifts in operating condition are a final step in the recovery process.SIGNIFICANCEThe endocochlear potential, the +80 mV potential difference across the fluid filled compartments of the cochlea, is essential for normal mechanoelectrical transduction, which leads to receptor potentials in the sensory hair cells when they vibrate in response to sound. Intracochlear vibrations are boosted tremendously by an active nonlinear feedback process that endows the cochlea with its healthy sensitivity and frequency resolution. When the endocochlear potential was reduced by an injection of furosemide, the basilar membrane vibrations resembled those of a passive cochlea, with broad tuning and linear scaling. The vibrations in the region of the outer hair cells also lost the tuned peak, but retained nonlinearity at frequencies below the peak, and these sub-BF responses recovered fairly rapidly. Vibration responses at the peak recovered nearly fully over 2 hours. The staged vibration recovery and a similarly staged DPOAE recovery suggests that physical shifts in operating condition are a final step in the process of cochlear recovery.


Revista CEFAC ◽  
2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Ana Karina Lima Buriti ◽  
Lilian Aguiar de Mello ◽  
Bruna de Souza Pedroso Machado ◽  
Daniela Gil

ABSTRACT Purpose: to verify the functioning of the outer hair cells and the medial efferent olivocochlear system, and the integrity of the auditory pathways in the brainstem up to the auditory cortex, in aphasic individuals. Methods: the sample comprised 20 individuals - 10 without aphasia and 10 with it, aged from 21 to 58 years. The procedures used were the research of the otoacoustic emissions by a transient stimulus with and without noise, and the cognitive potential (tone-burst and speech stimuli). The findings were analyzed based on descriptive statistics. Results: the suppression effect was more present in individuals without aphasia when compared with the aphasic ones. In the cognitive potential, the mean latency values of P3 was within normality standards, with a higher latency in the individuals presented with aphasia for the tone-burst stimulus in both ears. A statistically significant difference of the P3-N2 amplitude was observed for the tone-burst stimulus, comparing the ears in both groups, and for speech stimulus only to the left ear in both groups. Conclusions: aphasic individuals did not present significant differences regarding suppression of the otoacoustic emissions. As for the cognitive potential, the aphasic individuals presented higher latency values when compared to those with no aphasia.


1997 ◽  
Vol 116 (6) ◽  
pp. 585-592 ◽  
Author(s):  
Kathleen C. Y. Sie ◽  
Susan J. Norton

Ototoxicity associated with cis-platinum administration commonly presents as hearing loss and tinnitus. The hearing loss is usually an irreversible, high-frequency sensorineural loss. Histologic studies in humans and animals suggest that the outer hair cells (OHCs) are most susceptible to cis-platinum. Evoked otoacoustic emissions (EOAE), as a measure of outer hair cell function, are potentially useful in following ototoxic insults involving OHCs. Distortion-product otoacoustic emissions (DPOAE) test frequency-specific regions of the cochlea and therefore may be particularly well suited for monitoring ototoxic injuries. We measured distortion product otoacoustic emissions, at f2 = 2, 4, 6, 8, 10, and 12 kHz, in gerbils after a single large dose of cis-platinum. Animals treated with saline served as controls. The findings were compared to auditory brain stem evoked response (ABR) thresholds, using tone pips of the same frequencies. The DPOAE and ABR thresholds were measured before treatment and again 2, 5, and 14 days after drug administration. The changes in DPOAE were compared with the changes in ABR. No treatment effect was noted in the 2-day group. Animals treated with c/s-platinum demonstrated significant elevation of DPOAE and ABR thresholds compared with control animals at 5 and 14 days. There was no significant difference between the threshold changes in the 5-and 14-day groups.


2020 ◽  
Vol 36 (1) ◽  
Author(s):  
Doaa Elmoazen ◽  
Hesham Kozou ◽  
Basma Elabassiery

Abstract Background The general consensus on the role of hearing loss in generating tinnitus is not relevant in tinnitus patients with normal hearing thresholds. One source of tinnitus may be related to damage to outer hair cells (OHC) of the cochlea. If the OHC of the human cochlea are to be involved in the generation of tinnitus, testing of Otoacoustic emissions (OAE) could provide a reliable means of recording OHC dysfunction. We investigated the role of OHC and cochlear efferent system in tinnitus development in normal hearing ears through studying of Distortion Product Otoacoustic Emissions (DPOAE) and Transient Evoked Otoacoustic Emissions (TEOAE) amplitudes, contralateral suppression amplitudes and suppression value in 15 normal hearing tinnitus patients and 15 control subjects. Results Mean f2 DPOAE amplitudes and contralateral suppression were significantly lower in tinnitus group compared to controls for all frequencies from 1001 to 6348 Hz. Suppression values of DPOAEs revealed lower but not significant difference between tinnitus and control groups for all frequencies except 1587 and 6348 Hz. TEOAE amplitudes and contralateral suppression were significantly lower in tinnitus groups for all frequencies from 1000 to 4000 Hz compared to the control group. Suppression value of TEOAEs revealed no significant difference between the two groups for all frequencies except 3000 and 4000 Hz were significantly lower in the tinnitus group compared to the control group. Conclusions Normal hearing manifested by pure tone audiometry in non-vascular tinnitus sufferers does not exclude OHC and/or cochlear efferent pathology.


Author(s):  
Aras Karimiani ◽  
Nematollah Rouhbakhsh ◽  
Farzaneh Zamiri Abdollahi ◽  
Shohreh Jalaie

Background and Aim: It is not clear if the measurement of distortion product otoacoustic emissions (DPOAE) at frequencies above 8 kHz adds any value in determining the differences in the cochlear function between patients with and without tinnitus. This study aimed to compare DPOAE in the frequency range of 0.5−10 kHz in patients with normal hearing with and without tinnitus. Methods: This comparative cross-sectional study was conducted on 20 individuals with tinnitus and normal hearing as a study group (SG) and a control group (CG) of 20 normal-hearing individuals without tinnitus. The DPOAE was measured with F1/F2 = 1.22 and intensities of F1 = 65 dB SPL and F2 =55 dB SPL in the frequency range of 0.5−10 kHz, moreover in the frequency of tinnitus in SG and corresponding frequency in CG. Results: DPOAE level at 10 kHz did not differ significantly between SG and CG (p = 0.491). However, the mean of overall DPOAE level, DPOAE level at the frequency of tinnitus, and F2 values of 2.5, 5, and 6.298 kHz were significantly lower in SG than CG (p < 0.05). Conclusion: Measurement of DPOAE at 10 kHz did not seem to add any value in determining the differences in the cochlear function between patients with and without tinnitus. However, decreased DPOAE levels at 2.5, 5, and 6.298 kHz which were observed among patients who have tinnitus and normal hearing, indicates some outer hair cells damage that was not detectable by conventional audiometry. Keywords: Tinnitus; normal hearing; outer hair cell; distortion product otoacoustic emission


2013 ◽  
Vol 68 (11) ◽  
pp. 94-97
Author(s):  
I. N. D'yakonova ◽  
Yu. S. Ishanova ◽  
I. V. Rakhmanova

Aim: In our chronic experiment to  register changes of acoustic response of Distortion-Product Otoacoustic Emissions (DPOAE) of intact rabbits in postnatal ontogenesis for the purpose of getting normative data which can be used for studying impact of pathological factors on auditory function and maturation of activity of outer hair cell in ontogenesis. Materials and methods: Study of otoacoustic emissions used mature chinchilla rabbits with a 19 day life of up to 3 months. Results: in the course of ripening were obtained functional activity of outer hair cells of the cochlea. Conclusion: normative data obtained allow us to study using a rabbit model, the pathological effects of agents on the maturation of the outer hair cells of the cochlea in the experiment.


2022 ◽  
pp. 014556132110699
Author(s):  
Kazım Bozdemir ◽  
Elif Ersoy Çallıoğlu ◽  
Yüce İslamoğlu ◽  
Mehmet Kadir Ercan ◽  
Fatma Eser ◽  
...  

Purpose The purpose of the present study was to investigate the effects of COVID-19 on audiovestibular system with Transiently Evoked Distortion Otoacoustic Emissions (TOAE), Distortion Product Otoacoustic Emissions (DPOAE), video head impulse test (vHIT) and caloric test. Methods Audiovestibular findings of 24 patients with moderate/severe COVID-19 and 24 healthy controls were compared using pure tone audiometry, tympanometry, TOAE, DPOAE, caloric test, and vHIT. Results On audiometry, the pure tone averages of the COVID-19 patients were higher than the controls ( P = .038). The TEOAE amplitudes at 4000 and 5000 Hz ( P = .006 and P < .01), and DPOAE amplitudes at 3000, 6000, and 8000 Hz ( P < .001, P = .003 and P < .001) were significantly lower in COVID-19 patients compared to the controls. On vestibular tests, there was no significant difference between the caloric test results of the patients and the controls ( P > .05). On vHIT testing, amplitudes of right semicircular canal was found to be significantly lower in COVID-19 group compared to the control group ( P = .008). Conclusion COVID-19 may affect inner ear functions causing a subtle damage in the outer hair cells and lateral semicircular canals. It must be kept in mind that COVID-19 may cause cochleovestibular problems.


2020 ◽  
Vol 117 (20) ◽  
pp. 11109-11117
Author(s):  
Woongsu Han ◽  
Jeong-Oh Shin ◽  
Ji-Hyun Ma ◽  
Hyehyun Min ◽  
Jinsei Jung ◽  
...  

Outer hair cells (OHCs) play an essential role in hearing by acting as a nonlinear amplifier which helps the cochlea detect sounds with high sensitivity and accuracy. This nonlinear sound processing generates distortion products, which can be measured as distortion-product otoacoustic emissions (DPOAEs). The OHC stereocilia that respond to sound vibrations are connected by three kinds of extracellular links: tip links that connect the taller stereocilia to shorter ones and convey force to the mechanoelectrical transduction channels, tectorial membrane-attachment crowns (TM-ACs) that connect the tallest stereocilia to one another and to the overlying TM, and horizontal top connectors (HTCs) that link adjacent stereocilia. While the tip links have been extensively studied, the roles that the other two types of links play in hearing are much less clear, largely because of a lack of suitable animal models. Here, while analyzing genetic combinations of tubby mice, we encountered models missing both HTCs and TM-ACs or HTCs alone. We found that the tubby mutation causes loss of both HTCs and TM-ACs due to a mislocalization of stereocilin, which results in OHC dysfunction leading to severe hearing loss. Intriguingly, the addition of the modifier allele modifier of tubby hearing 1 in tubby mice selectively rescues the TM-ACs but not the HTCs. Hearing is significantly rescued in these mice with robust DPOAE production, indicating an essential role of the TM-ACs but not the HTCs in normal OHC function. In contrast, the HTCs are required for the resistance of hearing to damage caused by noise stress.


1994 ◽  
Vol 74 (1-2) ◽  
pp. 204-216 ◽  
Author(s):  
M. Subramaniam ◽  
R.J. Salvi ◽  
V.P. Spongr ◽  
D. Henderson ◽  
N.L. Powers

Sign in / Sign up

Export Citation Format

Share Document