Getting at the Variable Expressivity of Von Willebrand Disease

2001 ◽  
Vol 86 (07) ◽  
pp. 144-148 ◽  
Author(s):  
Gallia Levy ◽  
David Ginsburg

SummaryVon Willebrand disease (VWD) is a heterogeneous bleeding disorder caused by abnormalities of von Willebrand factor (VWF). VWF levels vary widely in the general population, and this variation is likely to be a major factor accounting for the incomplete penetrance and variable expressivity of VWD. In addition, variation in VWF level may play an important role in determining the risk of venous thrombosis. A large component of the variation in VWF level in the general population has been shown to be attributable to genetic factors. This review will focus on the current understanding of the genetic causes for variation in VWF level, and will highlight future directions for getting at the variable expressivity of von Willebrand disease.

Blood ◽  
2015 ◽  
Vol 126 (2) ◽  
pp. 262-269 ◽  
Author(s):  
Junmei Chen ◽  
Jesse D. Hinckley ◽  
Sandra Haberichter ◽  
Paula Jacobi ◽  
Robert Montgomery ◽  
...  

Key Points VWD is characterized by variable expressivity, even within families with the same VWF mutation. The content of mutant monomers in the final multimeric structure may explain the observed variability.


Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5368-5374 ◽  
Author(s):  
Jordan A. Shavit ◽  
Ani Manichaikul ◽  
Heidi L. Lemmerhirt ◽  
Karl W. Broman ◽  
David Ginsburg

Abstract Type 1 von Willebrand disease (VWD) is the most common inherited human bleeding disorder. However, diagnosis is complicated by incomplete penetrance and variable expressivity, as well as wide variation in von Willebrand factor (VWF) levels among the normal population. Previous work has exploited the highly variable plasma VWF levels among inbred strains of mice to identify 2 major regulators, Mvwf1 and Mvwf2 (modifier of VWF). Mvwf1 is a glycosyltransferase and Mvwf2 is a natural variant in Vwf that alters biosynthesis. We report the identification of an additional alteration at the Vwf locus (Mvwf5), as well as 2 loci unlinked to Vwf (Mvwf6-7) using a backcross approach with the inbred mouse strains WSB/EiJ and C57BL/6J. Through positional cloning, we show that Mvwf5 is a cis-regulatory variant that alters Vwf mRNA expression. A similar mechanism could potentially explain a significant percentage of human VWD cases, especially those with no detectable mutation in the VWF coding sequence. Mvwf6 displays conservation of synteny with potential VWF modifier loci identified in human pedigrees, suggesting that its ortholog may modify VWF in human populations.


1992 ◽  
Vol 68 (04) ◽  
pp. 464-469 ◽  
Author(s):  
Y Fujimura ◽  
S Miyata ◽  
S Nishida ◽  
S Miura ◽  
M Kaneda ◽  
...  

SummaryWe have recently shown the existence of two distinct forms of botrocetin (one-chain and two-chain), and demonstrated that the two-chain species is approximately 30 times more active than the one-chain in promoting von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib. The N-terminal sequence of two-chain botrocetin is highly homologous to sea-urchin Echinoidin and other Ca2+-dependent lectins (Fujimura et al., Biochemistry 1991; 30: 1957–64).Present data indicate that purified two-chain botrocetin binds to vWF from plasmas of patients with type IIA or IIB von Willebrand disease and its interaction is indistinguishable from that with vWF from normal individuals. However, an “activated complex” formed between botrocetin and IIB vWF expresses an enhanced biological activity for binding to GP Ib whereas the complex with IIA vWF has a decreased binding activity. Among several anti-vWF monoclonal antibodies (MoAbs) which inhibit ristocetin-induced platelet aggregation and/or vWF binding to GPIb, only two MoAbs (NMC-4 and RFF-VIII RAG:1) abolished direct binding between purified botrocetin and vWF. This suggests that they recognize an epitope(s) on the vWF molecule in close proximity to the botrocetin binding site.


1993 ◽  
Vol 69 (02) ◽  
pp. 173-176 ◽  
Author(s):  
Anna M Randi ◽  
Elisabetta Sacchi ◽  
Gian Carlo Castaman ◽  
Francesco Rodeghiero ◽  
Pier Mannuccio Mannucci

SummaryType I von Willebrand disease (vWD) Vicenza is a rare variant with autosomal dominant transmission, characterized by the presence of supranormal von Willebrand factor (vWF) multimers in plasma, similar to those normally found in endothelial cells and megakaryocytes. The patients have very low levels of plasma vWF contrasting with a mild bleeding tendency. The pathophysiology of this subtype is still unknown. The presence of supranormal multimers in the patients’ plasma could be due to a mutation in the vWF molecule which affects post-translational processing, or to a defect in the cells’ processing machinery, independent of the vWF molecule. In order to determne if type I vWD Vicenza is linked to the vWF gene, we studied six polymorphic systems identified within the vWF gene in two apparently unrelated families with type I vWD Vicenza. The results of this study indicate a linkage between vWF gene and the type I vWD Vicenza trait. This strongly suggests that type I vWD Vicenza is due to a mutation in one of the vWF alleles, which results in an abnormal vWF molecule that is processed to a lesser extent than normal vWF.


1994 ◽  
Vol 72 (02) ◽  
pp. 180-185 ◽  
Author(s):  
David J Mancuso ◽  
Elodee A Tuley ◽  
Ricardo Castillo ◽  
Norma de Bosch ◽  
Pler M Mannucci ◽  
...  

Summaryvon Willebrand factor gene deletions were characterized in four patients with severe type III von Willebrand disease and alloantibodies to von Willebrand factor. A PCR-based strategy was used to characterize the boundaries of the deletions. Identical 30 kb von Willebrand factor gene deletions which include exons 33 through 38 were identified in two siblings of one family by this method. A small 5 base pair insertion (CCTGG) was sequenced at the deletion breakpoint. PCR analysis was used to detect the deletion in three generations of the family, including two family members who are heterozygous for the deletion. In a second family, two type III vWD patients, who are distant cousins, share an -56 kb deletion of exons 22 through 43. The identification and characterization of large vWF gene deletions in these type III vWD patients provides further support for the association between large deletions in both von Willebrand factor alleles and the development of inhibitory alloantibodies.


1997 ◽  
Vol 77 (04) ◽  
pp. 760-766 ◽  
Author(s):  
Hiroshi Mohri ◽  
Etsuko Yamazaki ◽  
Zekou Suzuki ◽  
Toshikuni Takano ◽  
Shumpei Yokota ◽  
...  

SummaryA 20-year-old man with severe von Willebrand disease recently presented a progressive bleeding tendency, characterized recurrent subcutaneous hemorrhages and cerebral hemorrhage. Mixing and infusion studies suggested the presence of an inhibitor directed against vWF:RCo activity of von Willebrand factor (vWF) without significant inhibition of the FVIII:C. The inhibitor was identified as an antibody of IgG class. The inhibitor inhibited the interaction of vWF in the presence of ristocetin and that of asialo-vWF with GPIb while it partially blocked botrocetin-mediated interaction of vWF to GPIb. The inhibitor reacted with native vWF, the 39/34kDa fragment (amino acids [aa] 480/ 481-718) and the recombinant vWF fragment (MalE-rvWF508-704), but not with Fragment III-T2 (heavy chains, aa 273-511; light chains, aa 674-728). A synthetic peptide (aa 514-542) did not inhibit vWF-inhibitor complex formation. We conclude that this is the first autoantibody of class IgG from human origin that recognizes the sequence in the A1 loop of vWF, resulting in a virtual absence of functional vWF and a concomitant severe bleeding tendency although recognition site is different from the residues 514-542 which is crucial for vWF-GPIb interaction.


2020 ◽  
Vol 432 (2) ◽  
pp. 305-323 ◽  
Author(s):  
Alexander Tischer ◽  
Maria A. Brehm ◽  
Venkata R. Machha ◽  
Laurie Moon-Tasson ◽  
Linda M. Benson ◽  
...  

2021 ◽  
Vol 47 (02) ◽  
pp. 192-200
Author(s):  
James S. O'Donnell

AbstractThe biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.


Sign in / Sign up

Export Citation Format

Share Document