Immunohistochemical Detection of Motor Endplates in the Long-Term Denervated Muscle

2018 ◽  
Vol 34 (05) ◽  
pp. 348-358 ◽  
Author(s):  
Jingming Chen ◽  
Jing Li ◽  
Themba Nyirenda ◽  
Mary Fowkes ◽  
Stanislaw Sobotka ◽  
...  

Background We have demonstrated that the native motor zone (NMZ) within a muscle is an ideal target for performing nerve-muscle-endplate band grafting (NMEG) to restore motor function of a denervated muscle. This study was designed to determine spatiotemporal alterations of the myofibers, motor endplates (MEPs), and axons in the NMZ of long-term denervated muscles for exploring if NMEG-NMZ technique would have the potential for delayed reinnervation. Methods Sternomastoid (SM) muscles of adult female Sprague-Dawley rats (n = 21) were experimentally denervated and denervation-induced changes in muscle weight, myofiber size, MEPs, and intramuscular nerve axons were evaluated histomorphometrically and immunohistochemically at the end of 3, 6, and 9 months after denervation. The values obtained from the ipsilateral normal side served as control. Results The denervated SM muscles exhibited a progressive reduction in muscle weight (38%, 31%, and 19% of the control) and fiber diameter (52%, 40%, and 28% of the control) for 3-, 6-, and 9-month denervation, respectively. The denervated MEPs were still detectable even 9 months after denervation. The mean number of the denervated MEPs was 79%, 65%, and 43% of the control in the 3-, 6-, and 9-month denervated SM, respectively. Degenerated axons in the denervated muscles became fragmented. Conclusions Persistence of MEPs in the long-term denervated SM suggests that some surgeries targeting the MEPs such as NMEG-NMZ technique should be effective for delayed reinnervation. However, more work is needed to develop strategies for preservation of muscle mass and MEPs after denervation.

1988 ◽  
Vol 255 (6) ◽  
pp. E850-E856 ◽  
Author(s):  
R. R. Almon ◽  
D. C. Dubois

This report describes changes in muscle mass of innervated and denervated pairs of muscles taken from intact and adrenalectomized 250-g male Sprague-Dawley rats provided with different diets. Diets ranged from a nutritionally complete liquid diet to starvation (water only). In the intact animals, muscles with a more tonic character (soleus) are less sensitive to starvation than are muscles with a more phasic character (extensor digitorum longus), whereas the opposite is true of denervation. In the intact animals, starvation greatly increased the amount of atrophy following denervation. In the adrenalectomized animals, starvation had no effect on the amounts of atrophy following denervation. Furthermore, adrenalectomy virtually eliminated the fiber-type differences in the amount of atrophy following denervation. In addition, a comparison between denervated muscles from intact animals and adrenalectomized animals subjected to starvation demonstrates that all denervated muscles from the adrenalectomized animals atrophy less. Finally, it was observed that although an adrenalectomized animal can tolerate 6 days of starvation, an adrenalectomized-castrated animal cannot tolerate even short periods of starvation. The difference appears to be due to low amounts of corticosterone of testicular origin.


2006 ◽  
Vol 82 (4) ◽  
pp. 285-291 ◽  
Author(s):  
H. J. Lee ◽  
S. H. Kim ◽  
S. Y. Choi ◽  
Y. M. Gimm ◽  
J. K. Pack ◽  
...  

2006 ◽  
Vol 74 (7) ◽  
pp. 4387-4389 ◽  
Author(s):  
Rachel Marion ◽  
Asiya Baishanbo ◽  
Gilles Gargala ◽  
Arnaud François ◽  
Philippe Ducrotté ◽  
...  

ABSTRACT In 5-day-old immunocompetent Sprague-Dawley rats infected with either 102 or 105 Cryptosporidium parvum oocysts, transient infection resulted 120 days later in increased cardiovascular depressor response to jejunal distension and jejunal myeloperoxidase activity (P < 0.05). Nitazoxanide treatment normalized jejunal sensitivity (P < 0.001) but not myeloperoxidase levels (P > 0.05). Data warrant further evaluation of the role of early cryptosporidiosis in the development of chronic inflammatory gut conditions.


1988 ◽  
Vol 255 (6) ◽  
pp. H1509-H1515 ◽  
Author(s):  
M. D. Delp ◽  
R. B. Armstrong

The purpose of this study was to test the hypothesis that extrinsic mechanical factors, i.e., the dynamic shortening and lengthening imposed on a muscle during limb movements and the rhythmic compressions as surrounding muscles contract and relax, contribute to the initial muscle hyperemia during locomotion in conscious male Sprague-Dawley rats. Soleus and lateral head of gastrocnemius muscles were surgically denervated in one hindlimb several hours before exercise to remove 1) local metabolic vasodilator effects, 2) vasoconstrictor or vasodilatory influences mediated through sympathetic postganglionic fibers, and 3) intrinsic mechanical pumping. Blood flow was measured with radioactive microspheres during preexercise and at 30 s and 5 min of exercise in rats walking at 15 m/min or a motor-driven treadmill. Glycogen concentrations were also measured as an indicator of muscular activity to verify the denervation. Blood flows to control muscles in the normal limb were similar to previously reported values during preexercise and exercise. Denervation, however, decreased preexercise blood flow (69–88%) to muscle composed predominantly of oxidative fibers and increased flow (53%) to muscle composed predominantly of glycolytic fibers. During exercise, blood flow to denervated muscles either remained unchanged or decreased. These data suggest that extrinsic mechanical factors do not significantly contribute to the initial hyperemic response at the onset of low-intensity exercise in normal muscle.


2001 ◽  
Vol 90 (5) ◽  
pp. 2001-2006 ◽  
Author(s):  
D. D. Fuller ◽  
A. G. Zabka ◽  
T. L. Baker ◽  
G. S. Mitchell

Episodic hypoxia evokes a sustained augmentation of respiratory motor output known as long-term facilitation (LTF). Phrenic LTF is prevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptor antagonist ketanserin. We tested the hypothesis that 5-HT receptor activation is necessary for the induction but not maintenance of phrenic LTF. Peak integrated phrenic nerve activity (∫Phr) was monitored for 1 h after three 5-min episodes of isocapnic hypoxia (arterial Po 2 = 40 ± 2 Torr; 5-min hyperoxic intervals) in four groups of anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats [ 1) control ( n = 11), 2) ketanserin pretreatment (2 mg/kg iv; n = 7), and ketanserin treatment 0 and 45 min after episodic hypoxia ( n = 7 each)]. Ketanserin transiently decreased ∫Phr, but it returned to baseline levels within 10 min. One hour after episodic hypoxia, ∫Phr was significantly elevated from baseline in control and in the 0- and 45-min posthypoxia ketanserin groups. Conversely, ketanserin pretreatment abolished phrenic LTF. We conclude that 5-HT receptor activation is necessary to initiate (during hypoxia) but not maintain (following hypoxia) phrenic LTF.


Sign in / Sign up

Export Citation Format

Share Document