ANALYSIS OF STRUCTURAL REQUIREMENTS FOR FACTOR VIII FUNCTION USING SITE-DIRECTED MUTAGENESIS

1987 ◽  
Author(s):  
Debra D Pittman ◽  
Louise C Wasley ◽  
Beth L Murray ◽  
Jack H Wang ◽  
Randal J Kaufman

Factor VIII (fVIII) functions in the intrinsic pathway of coagulation as the cofactor for Factor IXa proteolytic activation of Factor X. fVIII contains multiple sites which are susceptible to cleavage by thrombin, Factor Xa, and activate) protein C. Proteolytic cleavage is required for cofactor activity and may be responsible for inactivation of cofactor activity. In order to identify the role ofthe individual cleavages of fVIII in its activation and inactivation, site-directed DNA mediated mutagenesis of fVIII was performed and the altered forms of fVIII produced and characterized. Conversionof Arg residues to lie residues at amino acid positions 740, 1648, and 1721 resulted in resistance to thrombin cleavage at those siteswith no alteration of in vitro procoagulant activity. Modification of the thrombin cleavage sites at either positions 372 or 1689 resulted in loss of cofactor activity suggesting that these sites are important for activation. Modification of the postulated activated protein C cleavage site at position 336 resulted in fVIII with a higher specific activity than wild type, possibly due to resistance toproteolytic inactivation.DNA mediated mutagenesis was also used to study the role of post-translational biosynthetic modifications of fVIII. Structural characterization of recombinant fVIII suggested the presence of sulfated tyrosine residues within two acidic regions located between amino acid residues 336-372 and 1648-1689. Individual modification of theseTyr residues to Phe had negligible effect on synthesis and in vitrocofactor activity. The effect of combinations of these mutations onsecretion, cofactor activity, and vWF interaction will be presented.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 21-21
Author(s):  
Manjunath Goolyam Basavaraj ◽  
Sriram Krishnaswamy

Factor VIII (FVIII) with a multi-domain structure (A1-a1-A2-a2-B-a3-A3-C1-C2) is a procofactor and precursor for the anti-hemophilic cofactor protein, FVIIIa. Following the intracellular processing within the B domain, secreted FVIII circulates as a heterodimer with variably sized (90K-200K) heavy chain (A1-a1-A2-a2-B) and an 80K light chain (a3-A3-C1-C2). Proteolytic activation of FVIII by thrombin that yields heterotrimeric FVIIIa (A1-a1/A2-a2/A3-C1-C2), the cofactor for intrinsic tenase, involves cleavage of three peptide bonds between Arg372-Ser373, Arg740-Ser741, and Arg1689-Ser1690. Cleavage at Arg740 removes the B-domain, and cleavage at Arg1689 removes the a3-acidic region and releases FVIII from vWF, its carrier protein, and exposes membrane binding sites within the FVIII light chain. Cleavage at Arg372 separates A1-a1 and A2-a2 domains and is implicated in the cofactor-dependent recognition and enhancement in the rate of factor X (FX) activation by intrinsic tenase. Subsequently, the separated A2-a2 domain dissociates spontaneously from the heterotrimeric FVIIIa resulting in the rapid loss of cofactor activity. We speculated that the requirement for cleavage at Arg372 might be obviated by the insertion of an optimized linker sequence between A1-a1 and A2-a2 domains on an uncleavable Gln372 backbone. To investigate this possibility, we prepared cDNA constructs of B-domain deleted FVIII variants; FVIII wild-type (FVIIIWT), FVIII372Q, and FVIII372Q followed by a rigid (Ala-Pro)5 linker sequence (FVIII372Q-AP5). All three FVIII constructs were stably transfected into BHK cells and high expressing clones were selected by one stage aPTT and western blotting of expression media. Selected stable clones were further expanded to collect 15L of expression media over 5-day period, and recombinant FVIII variants were purified using a three-step chromatographic approach. These FVIII variants were studied using SDS-PAGE, western blotting, aPTT assays, thrombin generation assay (TGA) and purified assays to assess kinetics of FX activation and spontaneous loss of cofactor activity. In contrast to FVIIIWT, FVIII372Q and FVIII372Q-AP5 were completely resistant to cleavage at Gln372 by thrombin, yielding bands corresponding to A1-a1-A2-a2 (90K) and A3-C1-C2 (73K). In one stage aPTT assays, FVIII372Q showed prolonged clotting times with specific activity in the range of 200-400 U/mg, while FVIIIWT and FVIII372Q-AP5 displayed comparable clotting times with specific activities ranging between 8000-10000 U/mg and 4500-5500 U/mg, respectively. In TGA initiated with either 0.1 pM tissue factor or 1 pM factor XIa, both FVIIIWT and FVIII372Q-AP5 displayed similar TGA profiles. In steady state kinetic studies of FX activation using limiting concentrations of factor IXa, saturating concentrations of FVIII variants pretreated with thrombin, membranes and increasing concentrations of FX, the cofactor function of thrombin-cleaved FVIII372Q was severely impaired. However, despite lack of cleavage at Gln372 in FVIII372Q-AP5, catalytic efficiency for FX activation by intrinsic tenase assembled by this variant was comparable to that seen with FVIIIaWT. At the physiological concentration of FX, the initial velocity for Xa formation (v/E) for intrinsic tenase assembled with FVIIIa372Q-AP5 was within a factor of 2 of that observed with FVIIIaWT while the rate observed with FVIIIa372Q was >10-fold lower. Following rapid activation with thrombin, loss of cofactor function was significantly slower for FVIIIa372Q-AP5(t1/2 ~ 10 min) compared to FVIIIaWT (t1/2 ~ 2 min). Our findings indicate that the requirement for cleavage at Arg372 for the development of full FVIIIa cofactor function can be overcome by modulating the A1-A2 connector with an optimized linker sequence. Failure to yield an infinitely stable cofactor in the case of FVIIIa372Q-AP5 suggests that cleavage at Arg372 does not solely explain the spontaneous loss of FVIIIa cofactor function. Disclosures Krishnaswamy: Bayer: Research Funding.


1987 ◽  
Author(s):  
Randal J Kaufman ◽  
Debra D Pittman ◽  
Louise C Wasley ◽  
W Barry Foster ◽  
Godfrey W Amphlett ◽  
...  

Factor VIII is a high molecular weight plasma glycoprotein that functions in the blood clotting cascade as the cofactor for factor DCa proteolytic activation of factor X. Factor VIII does not function proteolytically in this reaction hut itself can be proteolytically activated by other coagulation enzymes such as factor Xa and thrombin. In the plasma, factor VIII exists as a 200 kDa amino-terminal fragment in a metal ion stabilized complex with a 76 kDa carboxy-terminal fragment. The isolation of the cENA for human factor VIII provided the deduced primary amino acid sequence of factor VIIT and revealed three distinct structural domains: 1) a triplicated A domain of 330 amino acids which has homology to ceruloplasmin, a plasma copper binding protein, 2) a duplicated C domain of 150 amino acids, and 3) a unique B domain of 980 amino acids. These domains are arranged as shown below. We have previously reported the B domain is dispensible far cofactor activity in vitro (Toole et al. 1986 Proc. Natl. Acad 5939). The in vivo efficacy of factor VIII molecules harboring the B domain deletion was tested by purification of the wildtype and modified forms and infusion into factor VIII deficient, hemophilic, dogs. The wildtype and the deleted forms of recombinant derived factor VIII exhibited very similar survival curves (Tl/2 = 13 hrs) and the cuticle bleeding times suggested that both preparations appeared functionally equivalent. Sepharose 4B chromatography indicated that both factor VIII molecules were capable of binding canine plasma vWF.Further studies have addressed what cleavages are necessary for activation of factor VIII. The position of the thrombin, factor Xa, and activated protein C (AFC) cleavage sites within factor VIII are presented below, site-directed ENA medicated mutagenesis has been performed to modify the arginine at the amino side of each cleavagesite to an soleucine. In all cases this modification resulted in molecules that were resistant to cleavage by thrombin at the modified site. Modification of the thrombin cleavage sites at 336 and 740 and modification of the factor Xa cleavage site at 1721 resulted in no loss of cofactor activity. Modification of the thrombin cleavage site at either 372 or 1689 destroyed oofactor activity. Modification of the thrombin cleavage site at 336 resulted in a factor VIII having an increased activity, possibly due to resistance to inactivation. These results suggest the requirement of cleavage at residues 372 and 1689 for cofactor activity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1711-1711 ◽  
Author(s):  
Keiji Nogami ◽  
Qian Zhou ◽  
Hironao Wakabayashi ◽  
Timothy Myles ◽  
Lawrence L. Leung ◽  
...  

Abstract Factor VIII is activated by proteolytic cleavages catalyzed by thrombin or factor Xa. An earlier study indicated that thrombin binding within the C2 domain facilitated cleavage at Arg1689 of factor VIII light chain (Nogami et al. (2000) J. Biol. Chem. 275, 25774–25780). However, thrombin-interactive region(s) within the heavy chain involved with cleaving the A1-A2 and A2-B domainal junctions remain to be determined. Several approaches were employed to examine the interactions between factor VIII heavy chain and thrombin. Fluorescence energy transfer using acrylodan-labeled A1 or A2 subunits (fluorescence donors) and a fluorescein-labeled, Phe-Pro-Arg-chloromethyl ketone active site-modified thrombin (Fl-FPR-thrombin; fluorescence acceptor) showed that FPR-thrombin bound to the A2 subunit with an ~6-fold higher affinity (Kd =36.6 nM) compared with the A1 subunit (Kd=234 nM). Solid phase binding assays using immobilized thrombin S205A, where the active-site Ser205 was converted to Ala by site directed mutagenesis, showed that the binding affinity of A2 subunit was ~3-fold greater than that of A1 subunit. Similar solid phase assays indicated that hirudin, a ligand for anion-binding exosite I of thrombin (ABE-I), effectively blocked thrombin interaction with A1 subunit while having little if any effect on its interaction with A2 subunit. Conversely, heparin, which binds ABE-II, blocked thrombin interaction with A2 subunit while showing only a marginal effect on A1 subunit binding. To identify an interactive site for thrombin in the A2 domain, we focused on two regions containing clustered acidic residues (389GluGluGluAspTrpAsp394 and 720GluAspSerTyrGluAsp725), which are localized near the N- and C-termini of the A2 domain, respectively. SDS-PAGE analyses using isolated factor VIII heavy chain as substrate showed peptides with the sequences 373–395 and 719–740 encompassing these acidic regions, blocked thrombin cleavage at both Arg372 (A1–A2 junction) and Arg740 (A2–B junction) while a 373–385 peptide did not block either cleavage. The 373–395 and 719–740 peptides competitively inhibited A2 binding to S205A thrombin in a solid phase assay (Ki=11.5 and 12.4 μM, respectively), and quenched the fluorescence of Fl-FPR-thrombin. These data demonstrate that both A2 terminal regions support interaction with thrombin. Furthermore, a B-domainless, factor VIII double mutant D392A/D394A was constructed and possessed specific activity equivalent to a severe hemophilia phenotype (<1% compared with wild type). This mutant was resistant to cleavage at Arg740 whereas cleavage at Arg372 was not appreciably affected. Thus the low specific activity of this mutant was attributed to small C-terminal extensions on the A2 subunit that were not removed following cleavage at Arg740. However, factor Xa cleavage of the mutant at Arg740 was not affected. These data suggest the acidic region comprising residues 389–394 in factor VIII A2 domain interacts with thrombin via ABE-II of the proteinase facilitating cleavage at Arg740.


1987 ◽  
Author(s):  
Steven Rosenberg ◽  
Karin Hartog ◽  
Ole Nordfand ◽  
Mirella Ezban ◽  
Rae Lyn Burke

The functional domains of Factor VIII have been investigated using site-directed mutagenesis to probe the effect of thrombin cleavage on pro-cofactor/cofactor activity. We have previously shown that clotting activity is obtained upon coexpression of the amino terminal (92 kDa) heavy chain and carboxyl terminal (80 kDa) light chain proteolytic cleavage products as individual, secreted proteins without the909 amino acid central region (Burke et.al., J. Biol. Chem. 261, 12574, 1986). In the present work the thrombin cleavage sites in the heavy and light chains previously characterized by others (D. Eaton et.al., Biochemistry 25, 505, 1986) have been modified to remove these sites and the mutagenized gene reassembled into separate expression vectors for the two chains. Coexpression of wild type and mutant proteins in COS-7 cells has been characterized by coagulant activity, immunological assays specific for each of the two chains, and radioimmuno-precipitations. Alteration of the thrombin cleavage site in the heavy chain (Arg-372→ΔArg-372) leads to loss of coagulant activity, whereas another mutant Arg-372→Lys-372 shows 20-fold reduced activity. Radioimmunoprecipitations and RIA data show that this is not a reflection of reduced synthesis or increased degradation of the mutant polypeptides. These results suggest that Arg-372 is required for the efficient folding, assembly, or proteolytic activation of Factor VIII.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1692-1692
Author(s):  
Jennifer Newell ◽  
Philip J. Fay

Abstract Factor VIIIa serves as an essential cofactor for the factor IXa-catalyzed activation of factor X during the propagation phase of coagulation. The factor VIII procofactor is converted to factor VIIIa by thrombin-catalyzed proteolysis of three P1 positions at Arg372 (A1–A2 junction), Arg740 (A2–B junction), and Arg1689 (a3–A3 junction). Cleavage at Arg372 exposes a cryptic functional factor IXa-interactive site, while cleavage at Arg1689 liberates factor VIII from von Willebrand factor and contributes to factor VIIIa specific activity, thus making both sites essential for procofactor activation. However, cleavage at Arg740, separating the A2–B domainal junction, has not been rigorously studied. To evaluate thrombin cleavage at Arg740, we prepared and stably expressed two recombinant factor VIII mutants, Arg740His and Arg740Gln. Results from a previous study examining proteolysis at Arg372 revealed substantially reduced cleavage rates following substitution of that P1 Arg with His, whereas replacing Arg with Gln at residue 372 yielded an uncleavable bond at that site (Nogami et al., Blood, 2005). Specific activity values for the factor VIII Arg740His and Arg740Gln variants as measured using a one-stage clotting assay were approximately 50% and 18%, respectively, that of the wild type protein. SDS-PAGE and western blotting following a reaction of factor VIII Arg740His with thrombin showed reduced rates of cleavage at His740 as well as at Arg372 relative to the wild type. Alternatively, factor VIII Arg740Gln was resistant to thrombin cleavage at Gln740 and showed little, if any, cleavage at Arg372 over an extended time course. The mutant proteins assayed in a purified system by factor Xa generation showed a slight increase in activity for the Arg740His variant compared with the Arg740Gln variant in both the absence and presence of thrombin, and the activities for both variants were reduced compared with wild type factor VIII. These results suggest that cleavage at residue 740 affects subsequent cleavage at Arg372 and generation of the active cofactor factor VIIIa. Preliminary results obtained evaluating proteolysis of these mutants by factor Xa, which cleaves the same sites in factor VIII as thrombin, also revealed slow proteolysis at the P1 His and no cleavage at the P1 Gln. However, subsequent cleavage at Arg372 exhibited less dependence on initial cleavage at residue 740. These observations may explain the higher than predicted specific activity values obtained for the two variants and suggest a different mechanism of action for the two activating proteinases. Overall, these results support a model whereby cleavage of factor VIII heavy chain by thrombin is an ordered pathway with initial cleavage at Arg740 required to facilitate cleavage at the critical Arg372 site to yield the active cofactor.


2009 ◽  
Vol 90 (7) ◽  
pp. 1741-1747 ◽  
Author(s):  
Tahir H. Malik ◽  
Candie Wolbert ◽  
Laura Nerret ◽  
Christian Sauder ◽  
Steven Rubin

It has previously been shown that three amino acid changes, one each in the fusion (F; Ala/Thr-91→Thr), haemagglutinin–neuraminidase (HN; Ser-466→Asn) and polymerase (L; Ile-736→Val) proteins, are associated with attenuation of a neurovirulent clinical isolate of mumps virus (88-1961) following serial passage in vitro. Here, using full-length cDNA plasmid clones and site-directed mutagenesis, it was shown that the single amino acid change in the HN protein and to a lesser extent, the change in the L protein, resulted in neuroattenuation, as assessed in rats. The combination of both amino acid changes caused neuroattenuation of the virus to levels previously reported for the clinical isolate following attenuation in vitro. The amino acid change in the F protein, despite having a dramatic effect on protein function in vitro, was previously shown to not be involved in the observed neuroattenuation, highlighting the importance of conducting confirmatory in vivo studies. This report provides additional supporting evidence for the role of the HN protein as a virulence factor and, as far as is known, is the first report to associate an amino acid change in the L protein with mumps virus neuroattenuation.


1989 ◽  
Vol 263 (1) ◽  
pp. 187-194 ◽  
Author(s):  
A Leyte ◽  
K Mertens ◽  
B Distel ◽  
R F Evers ◽  
M J M De Keyzer-Nellen ◽  
...  

The epitopes of four monoclonal antibodies against coagulation Factor VIII were mapped with the use of recombinant DNA techniques. Full-length Factor VIII cDNA and parts thereof were inserted into the vector pSP64, permitting transcription in vitro with the use of a promoter specific for SP6 RNA polymerase. Factor VIII DNA inserts were truncated from their 3′-ends by selective restriction-enzyme digestion and used as templates for ‘run-off’ mRNA synthesis. Translation in vitro with rabbit reticulocyte lysate provided defined radiolabelled Factor VIII fragments for immunoprecipitation studies. Two antibodies are shown to be directed against epitopes on the 90 kDa chain of Factor VIII, between residues 712 and 741. The 80 kDa chain appeared to contain the epitopes of the other two antibodies, within the sequences 1649-1778 and 1779-1840 respectively. The effect of antibody binding to these sequences was evaluated at two distinct levels within the coagulation cascade. Both Factor VIII procoagulant activity and Factor VIII cofactor function in Factor Xa generation were neutralized upon binding to the region 1779-1840. The antibodies recognizing the region 713-740 or 1649-1778, though interfering with Factor VIII procoagulant activity, did not inhibit in Factor Xa generation. These findings demonstrate that antibodies that virtually inhibit Factor VIII in coagulation in vitro are not necessarily directed against epitopes involved in Factor VIII cofactor function. Inhibition of procoagulant activity rather than of cofactor function itself may be explained by interference in proteolytic activation of Factor VIII. This hypothesis is in agreement with the localization of the epitopes in the proximity of thrombin-cleavage or Factor Xa-cleavage sites.


2011 ◽  
Vol 56 (3) ◽  
pp. 1331-1341 ◽  
Author(s):  
Philip J. F. Troke ◽  
Marilyn Lewis ◽  
Paul Simpson ◽  
Katrina Gore ◽  
Jennifer Hammond ◽  
...  

ABSTRACTFilibuvir (PF-00868554) is an investigational nonnucleoside inhibitor of the hepatitis C virus (HCV) nonstructural 5B (NS5B) RNA-dependent RNA polymerase currently in development for treating chronic HCV infection. The aim of this study was to characterize the selection of filibuvir-resistant variants in HCV-infected individuals receiving filibuvir as short (3- to 10-day) monotherapy. We identified amino acid M423 as the primary site of mutation arising upon filibuvir dosing. Through bulk cloning of clinical NS5B sequences into a transient-replicon system, and supported by site-directed mutagenesis of the Con1 replicon, we confirmed that mutations M423I/T/V mediate phenotypic resistance. Selection in patients of an NS5B mutation at M423 was associated with a reduced replicative capacityin vitrorelative to the pretherapy sequence; consistent with this, reversion to wild-type M423 was observed in the majority of patients following therapy cessation. Mutations at NS5B residues R422 and M426 were detected in a small number of patients at baseline or the end of therapy and also mediate reductions in filibuvir susceptibility, suggesting these are rare but clinically relevant alternative resistance pathways. Amino acid variants at position M423 in HCV NS5B polymerase are the preferred pathway for selection of viral resistance to filibuvirin vivo.


1992 ◽  
Vol 288 (1) ◽  
pp. 117-121 ◽  
Author(s):  
E P Ko ◽  
H Akatsuka ◽  
H Moriyama ◽  
A Shinmyo ◽  
Y Hata ◽  
...  

To elucidate the reaction mechanism of xylanase, the identification of amino acids essential for its catalysis is of importance. Studies have indicated the possibility that the reaction mechanism of xylanase is similar to that of hen's egg lysozyme, which involves acidic amino acid residues. On the basis of this assumption, together with the three-dimensional structure of Bacillus pumilus xylanase and its amino acid sequence similarity to other xylanases of different origins, three acidic amino acids, namely Asp-21, Glu-93 and Glu-182, were selected for site-directed mutagenesis. The Asp residue was altered to either Ser or Glu, and the Glu residues to Ser or Asp. The purified mutant xylanases D21E, D21S, E93D, E93S, E182D and E182S showed single protein bands of about 26 kDa on SDS/PAGE. C.d. spectra of these mutant enzymes show no effect on the secondary structure of xylanase, except that of D21E, which shows a little variation. Furthermore, mutations of Glu-93 and Glu-182 resulted in a drastic decrease in the specific activity of xylanase as compared with mutation of Asp-21. On the basis of these results we propose that Glu-93 and Glu-182 are the best candidates for the essential catalytic residues of xylanase.


2018 ◽  
Vol 116 (2) ◽  
pp. 679-688 ◽  
Author(s):  
Ming-ling Liao ◽  
George N. Somero ◽  
Yun-wei Dong

Comparative studies of orthologous proteins of species evolved at different temperatures have revealed consistent patterns of temperature-related variation in thermal stabilities of structure and function. However, the precise mechanisms by which interspecific variations in sequence foster these adaptive changes remain largely unknown. Here, we compare orthologs of cytosolic malate dehydrogenase (cMDH) from marine molluscs adapted to temperatures ranging from −1.9 °C (Antarctica) to ∼55 °C (South China coast) and show how amino acid usage in different regions of the enzyme (surface, intermediate depth, and protein core) varies with adaptation temperature. This eukaryotic enzyme follows some but not all of the rules established in comparisons of archaeal and bacterial proteins. To link the effects of specific amino acid substitutions with adaptive variations in enzyme thermal stability, we combined site-directed mutagenesis (SDM) and in vitro protein experimentation with in silico mutagenesis using molecular dynamics simulation (MDS) techniques. SDM and MDS methods generally but not invariably yielded common effects on protein stability. MDS analysis is shown to provide insights into how specific amino acid substitutions affect the conformational flexibilities of mobile regions (MRs) of the enzyme that are essential for binding and catalysis. Whereas these substitutions invariably lie outside of the MRs, they effectively transmit their flexibility-modulating effects to the MRs through linked interactions among surface residues. This discovery illustrates that regions of the protein surface lying outside of the site of catalysis can help establish an enzyme’s thermal responses and foster evolutionary adaptation of function.


Sign in / Sign up

Export Citation Format

Share Document