PLASMINOGEN ACTIVATOR INHIBITOR

Author(s):  
D J Loskutoff ◽  
J Mimuro ◽  
C Hekman

Plasminogen activation provides an important source of localized proteolytic activity not only during fibrinolysis, but also during ovulation, cell migration, epithelial cell differentiation, tumor invasion and a variety of other physiological processes. Precise regulation of plasminogen activator (PA) activity thus constitutes a critical feature of many biological processes. This control is achieved in large part through the action of specific PA inhibitors (PAIs). Although 4 distinct PAIs have been detected,1the endothelial cellTderived inhibitor (PAI-1) is the only one that efficiently inhibits both urokinase (Kd=2.3×10−13M; Kassoc =1.6×108 M−1s−1) and single-chaintissue-type PA (tPA; Kd=1.3×lO−15 M Kd=3.9×lO7M−1s−1). It also inhibits trypsin (Kassoc=6.8×106M−1 s−1 ) ancl Plasmin (Kassoc=7.6×l05 M−1 s5 Analysis of the effect of PAI-1 on the rate of plasminogen activation revealed a competitive type of inhibition when urokinase was employed but a linear mixed type of inhibition when single chain tPA was employed. These results suggest that the interaction of PAI-1 with tPA, in contrast to its interaction with urokinase, may involve 2 sites on the tPA molecule.PAI-1 has been purified from medium conditioned by cultured bovine aortic endothelial cells and partially characterized. It is a major biosynthetic product of these cells, accounting for as much as 12% of the total protein released by the cells in 24 h. It has an M of 50,000, an isoelectric point of 4.5-5.0, and is immunologically and biochemically related to the rapidly acting inhibitor present in human platelets and in the plasma of some patients at risk to develop thrombotic problems. Although it is relatively stable to conditions which inactivate most protease inhibitors (acid pH, SDS), it is extremely sensitive to oxidants. The molecular cloning of the PAI-1 gene revealed that the mature human protein is 379 amino acids long, contains an NH2-terminal valine, lacks cysteines and has a methionine at the Pi position of it's reactive center. The conversion of this methionine to methionine sulfoxide may be responsible for the rapid inactivation of PAI-1 by oxidants. Human PAI-1 has extensive (30%) homology with α1-antitrypsin and antithrombin III and is thus a member of the serine proteinase inhibitor (serpin) family; a group of related molecules that control the major protease cascades of the blood. The PAI-1 gene is approximately 12.2 kilobase pairs in length and is organized into nine exons and eight introns.The production of PAI-1 by endothelial cells is stimulated by endotoxin, interleukin-1, tumor necrosis factor, and transforming growth factor β(TGFβ). The cells are extremely sensitive to TGFβwith maximal effects (100-fold stimulation) observed with 1-2 ng/ml. These changes were relatively specific for PAI-1, and could be detected at both the protein and the RNA level. Interestingly, TGFgalso stimulated the amount of PAI-1 present in the extracellular matrix (ECM) of BAEs. PAI-1 was one of the primary ECM components of these cells, constituting 10-20% of the ECM proteins detected after SDS-PAGE.One of the most unusual properties of PAI-1 is that it exists in blood and in various cellular samples in both an active and an inactive (latent) form, the ratio depending on the source. The latent form can be converted into the active one by treatment with denaturants like SDS or guanidine-HCl. Although the majority of the cell-associated PAI-1 is active, it rapidly decays (t1/2=3 h) into the latent form once it is released from the cells. In contrast, the half-life of ECM associated PAI-1 was greater than 24 h. These data suggest that PAI-1 is produced by BAEs in an active form, and is then either released into the medium where it is rapidly inactivated, or released into the subendothelium where it binds to ECM. The specific binding of PAI-1 to ECM protects it from this inactivation.

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1090-1098
Author(s):  
EG Levin ◽  
L Santell

The plasminogen activator inhibitor from human endothelial cells (PAI- 1) exists in two forms in the culture medium: an active form that binds to and inactivates plasminogen activators and a latent form that in its native state has no anti-activator activity. Inhibitor activity associated with the latent form can be generated by treatment with protein denaturants and makes up more than 98% of the total inhibitor activity in conditioned medium. Plasminogen activator inhibitor activity is also found in cell cytosol. This inhibitor activity is stable to SDS-treatment but is not enhanced by it. We investigated the relationship between this active cell-associated inhibitor and the latent PAI-1 found in the conditioned medium. Both intracellular and extracellular inhibitors were immunoprecipitated by a monoclonal antibody produced against the latent inhibitor from HT1080 fibrosarcoma cells and electrophoresis on SDS gels of various acrylamide concentrations demonstrated that both forms had the same Mr. Incubation of cytosol inhibitor at 37 degrees C resulted in a decline in inhibitor activity with a half-life of approximately 4 hours, a rate of decline similar to that of the active PAI-1 in conditioned medium, with less than 10% of the original activity present after eight hours. This decline is accelerated at higher temperatures and is not affected by the presence of a variety of protease inhibitors. Approximately 90% of the activity can be regenerated after SDS treatment suggesting that the cell associated inhibitor, during incubation at 37 degrees C, converts to a form similar to that found in conditioned medium. Despite these similarities, the apparent Stoke's radii of the active intracellular inhibitor and the latent inhibitor in conditioned medium were significantly different with values of 2.77 nm and 2.40 nm for active and latent PAI-1, respectively. Incubation of the active form at 37 degrees C resulted in the shift of the Stoke's radius to that similar to the latent PAI-1 (2.45 nm). Thus, the active and latent PAI-1, while being immunologically similar and of the same apparent Mr, can be differentiated by their behavior on gel permeation columns. This suggests that the intracellular inhibitor is a precursor to the latent form.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1090-1098 ◽  
Author(s):  
EG Levin ◽  
L Santell

Abstract The plasminogen activator inhibitor from human endothelial cells (PAI- 1) exists in two forms in the culture medium: an active form that binds to and inactivates plasminogen activators and a latent form that in its native state has no anti-activator activity. Inhibitor activity associated with the latent form can be generated by treatment with protein denaturants and makes up more than 98% of the total inhibitor activity in conditioned medium. Plasminogen activator inhibitor activity is also found in cell cytosol. This inhibitor activity is stable to SDS-treatment but is not enhanced by it. We investigated the relationship between this active cell-associated inhibitor and the latent PAI-1 found in the conditioned medium. Both intracellular and extracellular inhibitors were immunoprecipitated by a monoclonal antibody produced against the latent inhibitor from HT1080 fibrosarcoma cells and electrophoresis on SDS gels of various acrylamide concentrations demonstrated that both forms had the same Mr. Incubation of cytosol inhibitor at 37 degrees C resulted in a decline in inhibitor activity with a half-life of approximately 4 hours, a rate of decline similar to that of the active PAI-1 in conditioned medium, with less than 10% of the original activity present after eight hours. This decline is accelerated at higher temperatures and is not affected by the presence of a variety of protease inhibitors. Approximately 90% of the activity can be regenerated after SDS treatment suggesting that the cell associated inhibitor, during incubation at 37 degrees C, converts to a form similar to that found in conditioned medium. Despite these similarities, the apparent Stoke's radii of the active intracellular inhibitor and the latent inhibitor in conditioned medium were significantly different with values of 2.77 nm and 2.40 nm for active and latent PAI-1, respectively. Incubation of the active form at 37 degrees C resulted in the shift of the Stoke's radius to that similar to the latent PAI-1 (2.45 nm). Thus, the active and latent PAI-1, while being immunologically similar and of the same apparent Mr, can be differentiated by their behavior on gel permeation columns. This suggests that the intracellular inhibitor is a precursor to the latent form.


Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1309-1313 ◽  
Author(s):  
EG Levin

Abstract Human endothelial cells release two forms of a plasminogen activator- specific inhibitor: an active form that readily binds to and inhibits plasminogen activators and an inactive or latent form that has no anti- activator activity but which can be activated by denaturation. Latent and active forms of plasminogen activator-specific inhibitor were measured in cultures of human umbilical vein endothelial cells. Latent inhibitor was activated by treatment with 1% sodium dodecyl sulfate (SDS), and both forms were assayed by the 125I-fibrin plate method. After 16 hours, the conditioned medium contained 104.6 U/mL latent inhibitor activity and 2.6 U/mL active inhibitor. The level of each form in the culture medium increased with time although the activity associated with the latent form rose more rapidly: the ratio of latent to active inhibitor activity was 12 at four hours (10.3 U/mL v 0.86 U/mL) and reached 56 at 24 hours (155.3 U/mL v 2.80 U/mL). Intracellular inhibitor activity was associated with the active form only; no additional inhibitor activity was observed following SDS treatment of cell extracts. A decline in active inhibitor activity occurred during incubation at 37 degrees C with a 50% reduction in activity occurring in two hours. Treatment of conditioned medium with 10 U/mL thrombin also resulted in a loss of active inhibitor activity. The latent inhibitor, however, was not affected by either of these conditions. The inhibitor activity lost during incubation at 37 degrees C or thrombin treatment could be regenerated by SDS treatment, suggesting that the loss of the active inhibitor activity represented a conversion of this form to its latent counterpart. Thus, the concentration, stability, and regulation of these two forms of plasminogen activator inhibitor in human endothelial cell cultures differ significantly.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1467-1473 ◽  
Author(s):  
VW van Hinsbergh ◽  
T Kooistra ◽  
EA van den Berg ◽  
HM Princen ◽  
W Fiers ◽  
...  

Abstract The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from umbilical vein (twofold) and from foreskin microvessles (four to eight fold). This was demonstrated by titration of endothelial cell-conditioned medium with t-PA, by reverse fibrin autography, and by immunoprecipitation of [35S]PAI-1 by anti-PAI-1 IgG. TNF also induced a marked increase of PAI-1 messenger RNA (mRNA) in the cells. The stimulation of PAI activity by TNF was seen at 4 U/mL and reached a maximum at 500 U/mL. Human recombinant lymphotoxin and interleukin-1 (alpha and beta) also stimulated the production of PAI activity, while interleukin-6 was ineffective. Separate additions of TNF or interleukin-1 (IL-1) at optimal concentrations (500 U/mL and 5 U/mL, respectively) resulted in a comparable stimulation of PAI production by endothelial cells. The simultaneous addition of both mediators resulted in an additive effect. The effect of TNF could not be prevented by the addition of polymyxin B or by anti-IL-1 antibodies. Therefore, it is unlikely that TNF acts through the induction of IL-1 secretion by endothelial cells. Two hours after a bolus injection of 250,000 U/kg TNF into rats, a fivefold increase in circulating PAI levels was found. In the next ten hours, the levels returned to normal. Blood platelets do not significantly contribute to the increase in circulating PAI, because the number of platelets did not change after TNF injection and the amount of PAI in blood platelets is not sufficient for several hours during an increase in PAI activity. The acute phase reactants, fibrinogen and alpha 2-antiplasmin in rat plasma, were altered little if any two to 24 hours after injection of 250,000 U/kg TNF. In vitro, TNF did not change PAI production by human and rat hepatocytes in primary monolayer culture. Therefore, it is most likely that vascular endothelial cells contribute to the increased amount of circulating PAI induced by TNF in vivo. This increase in PAI activity might decrease fibrinolysis.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1467-1473
Author(s):  
VW van Hinsbergh ◽  
T Kooistra ◽  
EA van den Berg ◽  
HM Princen ◽  
W Fiers ◽  
...  

The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from umbilical vein (twofold) and from foreskin microvessles (four to eight fold). This was demonstrated by titration of endothelial cell-conditioned medium with t-PA, by reverse fibrin autography, and by immunoprecipitation of [35S]PAI-1 by anti-PAI-1 IgG. TNF also induced a marked increase of PAI-1 messenger RNA (mRNA) in the cells. The stimulation of PAI activity by TNF was seen at 4 U/mL and reached a maximum at 500 U/mL. Human recombinant lymphotoxin and interleukin-1 (alpha and beta) also stimulated the production of PAI activity, while interleukin-6 was ineffective. Separate additions of TNF or interleukin-1 (IL-1) at optimal concentrations (500 U/mL and 5 U/mL, respectively) resulted in a comparable stimulation of PAI production by endothelial cells. The simultaneous addition of both mediators resulted in an additive effect. The effect of TNF could not be prevented by the addition of polymyxin B or by anti-IL-1 antibodies. Therefore, it is unlikely that TNF acts through the induction of IL-1 secretion by endothelial cells. Two hours after a bolus injection of 250,000 U/kg TNF into rats, a fivefold increase in circulating PAI levels was found. In the next ten hours, the levels returned to normal. Blood platelets do not significantly contribute to the increase in circulating PAI, because the number of platelets did not change after TNF injection and the amount of PAI in blood platelets is not sufficient for several hours during an increase in PAI activity. The acute phase reactants, fibrinogen and alpha 2-antiplasmin in rat plasma, were altered little if any two to 24 hours after injection of 250,000 U/kg TNF. In vitro, TNF did not change PAI production by human and rat hepatocytes in primary monolayer culture. Therefore, it is most likely that vascular endothelial cells contribute to the increased amount of circulating PAI induced by TNF in vivo. This increase in PAI activity might decrease fibrinolysis.


Blood ◽  
1992 ◽  
Vol 80 (9) ◽  
pp. 2269-2274
Author(s):  
IM Lang ◽  
JJ Marsh ◽  
KM Moser ◽  
RR Schleef

Data from a number of laboratories indicate that human platelets contain type I plasminogen activator inhibitor (PAI-1) primarily in a latent form; however, one report (Biochemistry 28:5773, 1989) indicated that it is predominantly the active form of PAI-1 that is present in and can be purified from an ammonium sulfate precipitate of porcine platelets. To clarify this situation, we investigated and compared the status of PAI-1 in porcine and human platelets. Immunologic analysis of the ability of PAI-1 to form complexes with immobilized t-PA indicated that porcine and human platelets contained 3.7 +/- 0.4 and 1.7 +/- 0.3 U of PAI activity per 10(8) platelets (n = 6; +/- SD), respectively; sodium dodecyl sulfate (SDS)-activation of the lysates increased PAI-1 activity to 10.8 +/- 3.0 and 3.8 +/- 0.5 U per 10(8) platelets. Platelet lysates were also treated with an excess of soluble t-PA, which formed complexes with active PAI-1, whereas the latent form was detected by SDS-polyacrylamide gel electrophoresis and reverse fibrin autography. Furthermore, immobilized t-PA was able to deplete active PAI-1 from the platelet extracts, and the latent form remaining in the absorbed extract could be quantitated by activation with 4 mol/L guanidine. To investigate the differences between our observations and the published data, porcine platelets were extracted, and PAI-1 was partially purified as described in the literature. For quantitative analysis, porcine platelet PAI-1 was also purified to homogeneity using standard chromatographic procedures optimized in our laboratory for endothelial PAI-1, and the purified protein was used to develop an enzyme-linked immunoabsorbent assay for porcine PAI-1 antigen. Our results indicate that: (1) latent PAI-1 in concentrated ammonium sulfate precipitates of porcine platelet lysates cannot be detected unless the precipitates are diluted before treatment with denaturants; and (2) active and latent porcine platelet PAI-1 can be separated by gel filtration over molecular sieving columns. In summary, this report documents that PAI-1 in porcine platelets is present in both an active and a latent form.


1994 ◽  
Vol 71 (04) ◽  
pp. 493-498 ◽  
Author(s):  
D L Wang ◽  
Y T Pan ◽  
J J Wang ◽  
C H Cheng ◽  
C Y Liu

SummaryThe mechanism of platelet-enhanced fibrinolysis is unclear. We therefore investigated the fibrinolytic activity of human platelets and demonstrated that they contain a tissue plasminogen activator (tPA)- like plasminogen activator, abbreviated as tPA-like-PA. This activator was detected by ELISA in platelet incubation medium and in platelet Triton extracts. Plasminogen activation assays showed that this tPA- like-PA could induce plasminogen activation to form plasmin. Western blots of Triton extracts incubated with anti-tPA antibody demonstrated a major 64-kD protein band, compared to a 70-kD band for standard single chain tPA, plus a minor 118-kD band corresponding to a complex of tPA-like-PA and plasminogen activator inhibitor (PAI-1). Western blots of Triton extracts incubated with anti-PAI-1 antibody produced an approximately similar high-molecular-weight (118 kD) protein band. Fibrin zymographic analysis of affinity-purified tPA-like- PA demonstrated a major and a minor fibrin lysis zone, which approximately corresponded to the tPA-like-PA and its complex with PAI-1 observed by Western blots. Immunogold labelling and electron microscopy demonstrated that platelet activator, either as the free form or co-localized with PAI-1, was present in granules and in channels of the open canalicular system. We conclude that platelets contain a functionally active tPA-like-PA, whose low fibrinolytic activity might be due to its readily forming a complex with PAI-1. This functionally active tPA-like-PA might contribute to the enhanced fibrinolytic activity of platelets observed in platelet-rich thrombi.


2009 ◽  
Vol 297 (4) ◽  
pp. L568-L577 ◽  
Author(s):  
Andrey A. Komissarov ◽  
Andrew P. Mazar ◽  
Kathy Koenig ◽  
Anna K. Kurdowska ◽  
Steven Idell

The proenzyme single-chain urokinase plasminogen activator (scuPA) more effectively resolved intrapleural loculations in rabbits with tetracycline (TCN)-induced loculation than a range of clinical doses of two-chain uPA (Abbokinase) and demonstrated a trend toward greater efficacy than single-chain tPA (Activase) (Idell S et al., Exp Lung Res 33: 419, 2007.). scuPA more slowly generates durable intrapleural fibrinolytic activity than Abbokinase or Activase, but the interactions of these agents with inhibitors in pleural fluids (PFs) have been poorly understood. PFs from rabbits with TCN-induced pleural injury treated with intrapleural scuPA, its inactive Ser195Ala mutant, Abbokinase, Activase, or vehicle, were analyzed to define the mechanism by which scuPA induces durable fibrinolysis. uPA activity was elevated in PFs of animals treated with scuPA, correlated with the ability to clear pleural loculations, and resisted (70–80%) inhibition by PAI-1. α-macroglobulin (αM) but not urokinase receptor complexes immunoprecipitated from PFs of scuPA-treated rabbits retained uPA activity that resists PAI-1 and activates plasminogen. Conversely, little plasminogen activating or enzymatic activity resistant to PAI-1 was detectable in PFs of rabbits treated with Abbokinase or Activase. Consistent with these findings, PAI-1 interacts with scuPA much slower than with Activase or Abbokinase in vitro. An equilibrium between active and inactive scuPA (kon= 4.3 h−1) limits the rate of its inactivation by PAI-1, favoring formation of complexes with αM. These observations define a newly recognized mechanism that promotes durable intrapleural fibrinolysis via formation of αM/uPA complexes. These complexes promote uPA-mediated plasminogen activation in scuPA-treated rabbits with TCN-induced pleural injury.


1987 ◽  
Vol 105 (6) ◽  
pp. 2543-2549 ◽  
Author(s):  
E G Levin ◽  
L Santell

We have studied the distribution of the plasminogen activator inhibitor type 1 (PAI-1) in cultures of confluent human umbilical vein endothelial cells. Plasminogen activator inhibitor activity measured by the 125I-fibrin plate assay was detected in the cytosol (2.85 +/- 0.16 U), 100,000 g particulate fraction (1.26 +/- 0.30 U), and in the growth substratum (9.82 +/- 1.80 U). Characterization of the protein responsible for this activity by reverse fibrin autography, immunoprecipitation, and immunoblotting demonstrated that it had an Mr of 46,000 and was antigenically related to PAI-1. Only the active form of the inhibitor was found in all three fractions. Inhibitor in the cytosol and particulate fraction converted to the latent form during 37 degrees C incubation while the substratum inhibitor remained fully active. Extracellular PAI-1 was detected in the growth substratum before its appearance in conditioned medium and represented the major protein deposited beneath the cells. The inhibitor was only transiently localized in the substratum, disappearing within 6 h and concomitantly appearing in the culture medium. Incubation of isolated metabolically labeled substratum with tissue plasminogen activator (tPA) resulted in the appearance and release of an immunologically related inactive 44,000 Mr form as well as the tPA-PAI-1 complex (110,000 Mr). PAI-1 was also converted into its 44,000-Mr form and released by treatment of the substratum with human leukocyte elastase. The rapid deposition and predominance of PAI-1 in the underlying compartment of endothelial cells may explain how the basement membrane is protected from proteolytic degradation by plasmin-generating enzymes.


1989 ◽  
Vol 108 (5) ◽  
pp. 1987-1995 ◽  
Author(s):  
R W Stephens ◽  
J Pöllänen ◽  
H Tapiovaara ◽  
K C Leung ◽  
P S Sim ◽  
...  

Human HT-1080 fibrosarcoma cells produce urokinase-type plasminogen activator (u-PA) and type 1 plasminogen activator inhibitor (PAI-1). We found that after incubation of monolayer cultures with purified native human plasminogen in serum-containing medium, bound plasmin activity could be eluted from the cells with tranexamic acid, an analogue of lysine. The bound plasmin was the result of plasminogen activation on the cell surface; plasmin activity was not taken up onto cells after deliberate addition of plasmin to the serum-containing medium. The cell surface plasmin formation was inhibited by an anticatalytic monoclonal antibody to u-PA, indicating that this enzyme was responsible for the activation. Preincubation of the cells with diisopropyl fluorophosphate-inhibited u-PA led to a decrease in surface-bound plasmin, indicating that a large part, if not all, of the cell surface plasminogen activation was catalyzed by surface-bound u-PA. In the absence of plasminogen, most of the cell surface u-PA was present in its single-chain proenzyme form, while addition of plasminogen led to formation of cell-bound two-chain u-PA. The latter reaction was catalyzed by cell-bound plasmin. Cell-bound u-PA was accessible to inhibition by endogenous PAI-1 and by added PAI-2, while the cell-bound plasmin was inaccessible to serum inhibitors, but accessible to added aprotinin and an anticatalytic monoclonal antibody. A model for cell surface plasminogen activation is proposed in which plasminogen binding to cells from serum medium is followed by plasminogen activation by trace amounts of bound active u-PA, to form bound plasmin, which in turn serves to produce more active u-PA from bound pro-u-PA. This exponential process is subject to regulation by endogenous PAI-1 and limited to the pericellular space.


Sign in / Sign up

Export Citation Format

Share Document