Platelet Interaction with Collagen Fibrils in Flowing Blood

1977 ◽  
Vol 37 (01) ◽  
pp. 017-028 ◽  
Author(s):  
Hans R. Baumgartner ◽  
Thomas B. Tschopp ◽  
Harvey J. Weiss

SummaryAnticoagulated whole blood from patients and control subjects was circulated through an annular perfusion chamber in which the fibrillar collagen of α chymotrypsin-digested subendothelium and intact subendothelium were exposed. The blood flow conditions corresponded to those in arteries (830 sec–1 wall shear rate). Platelet surface interaction was measured mor-phometrically.Decreased adhesion to fibrillar collagen associated with normal spreading and normal adhesion-induced formation of platelet thrombi was found with blood of patients with von Willebrand’s disease and the Bernard Soulier Syndrome, indicating a defect in the initial attachment reaction of platelets with collagen. Platelets of patients with thrombasthenia did normally adhere to the collagen fibrils and also lost their subcellular organelles during this reaction, but they totally failed to adhere to each other. In storage pool disease platelet thrombus formation was consistently inhibited whereas adhesion and spreading was inhibited in some patients and normal in others. In contrast adhesion was always normal after ingestion of aspirin which consistently caused a marked inhibition of platelet thrombi. These findings correspond – in essence – to those previously described on intact subendothelium. However, the observed defects are more pronounced on the fibrillar collagen than on intact subendothelium.

1977 ◽  
Vol 37 (01) ◽  
pp. 001-016 ◽  
Author(s):  
Hans R. Baumgartner

SummaryThe subendothelial surface of rabbit aorta and α chymotrypsin-digested subendothelium were exposed to anticoagulated human blood in an annular flow chamber. The wall shear rate was similar to that observed in large arteries (830 sec–1) and exposure times varied from 2½ to 40 min.The platelet reactive substrate of α chymotrypsin-digested subendothelium consists of a three-dimensional meshwork of collagen fibrils which form islands of variable size and height in a matrix of virtually unreactive elastin. Collagen-induced aggregation in the aggregometer was similar with or without prior α chymotrypsin-digestion of a highly dispersed preparation of fibrillar collagen. The rate of platelet adhesion was decreased on the fibrillar collagen of α chymotrypsin-digested subendothelium as compared to intact subendothelium. On the other hand the rate of aggregation was increased once platelets adhered to the fibrillar collagen. Mural thrombi (aggregates) disappeared on subendothelium whereas they grew progressively on the fibrillar collagen. Thus the fibrillar collagen of α chymotrypsin-digested subendothelium appears to be a more thrombogenic surface. It is suggested that physical (loose three-dimensional meshwork versus a comparatively solid surface) and/or chemical (number of platelet reactive sites per unit surface area) differences between the two surfaces may explain the platelet-surface-interaction patterns which are characteristic for each surface.


1977 ◽  
Vol 38 (03) ◽  
pp. 0620-0629 ◽  
Author(s):  
Th. B Tschopp ◽  
H. R Baumgartner

SummaryCitrated rat blood was exposed to either subendothelium or the fibrillar collagen of enzymatically modified subendothelium of rabbit aorta in a perfusion system under laminar blood flow conditions at a wall shear rate of 830 s−1. The resulting platelet surface interaction was estimated by a morphometric method.With blood of fawn-hooded (FH) rats, which suffer from hereditary platelet “storage pool disease”, platelet spreading was slower on both exposed surfaces and resulted in a lower rate of surface coverage with platelets on subendothelium if compared with controls.The rate of adhesion of FH-platelets to the fibrillar collagen, however, was slightly higher as compared to controls despite reduced platelet spreading. This was probably due to the absence of platelet thrombus formation observed with FH-rat blood, whereas massive platelet thrombus formation took place in the controls. It is suggested that platelets of controls which arrive near the surface are preferentially incorporated into the rapidly forming platelet thrombi rather than reaching the surface, and hence do not increase surface-coverage with adhering platelets.The defective platelet adhesion and aggregation in the FH-rat was also apparent after desendothelialization of the aorta in vivo, although to a lesser extent, probably due to the extremely low thrombogenicity of rat aorta subendothelium.


1995 ◽  
Vol 73 (01) ◽  
pp. 126-131 ◽  
Author(s):  
Helge E Roald ◽  
Kjell S Sakariassen

SummaryPlatelet thrombus formation on collagen fibrils is most pronounced at the upstream end of the surface, and it gradually decreases along the axis in parallel with the direction of the blood flow. This phenomenon, known as axial dependent platelet thrombus formation, is explained by the balance of the platelet supply to the surface and the consumption of platelets by growing thrombi.In the present study we have affected this balance by (A) inhibiting the growth of platelet thrombi by aspirin (ASA) or clopidogrel, and thus increasing the platelet concentration at the surface, and by (B) utilising blood from cigarette smokers, who have enhanced thrombus formation immediately after smoking, and thus decreasing the platelet concentration at the surface. Thrombus formation in non-anticoagulated blood was triggered by collagen fibrils positioned in a parallel-plate perfusion chamber at a wall shear rate of 2600 s_1which is characteristic for moderately stenosed arteries. Morphometrical assessment of thrombus formation was performed at axial positions of 1 and 13 mm downstream to the blood flow inlet at the collagen surface.Platelet-collagen adhesion and thrombus volume in blood from nonsmokers were decreased at the downstream location by 39% (p ≤0.0001) and by 60% (p ≤0.0001), respectively. However, increasing the platelet concentration at the surface by partially inhibiting the thrombus growth by ASA or clopidogrel, reduced substantially the axial decrease in platelet adhesion and thrombus volume. The largest reduction was observed with clopidogrel which was also the strongest inhibitor of the thrombus growth at both axial positions investigated. The corresponding figures in blood from smokers with enhanced thrombus formation were 38% (p ≤0.0001) and 72% (p ≤0.001). Thus, enhanced upstream platelet consumption increased the axial reduction in thrombus volume, but not in platelet adhesion.These data substantiate the view that the “axial dependence phenomenon” may be explained by the balance between the platelet supply to the surface and the consumption of platelets by growing thrombi. It is also apparent that clopidogrel is a more potent inhibitor of platelet thrombus formation than ASA.


2003 ◽  
Vol 197 (11) ◽  
pp. 1585-1598 ◽  
Author(s):  
Shahrokh Falati ◽  
Qingde Liu ◽  
Peter Gross ◽  
Glenn Merrill-Skoloff ◽  
Janet Chou ◽  
...  

Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet–poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor– and PSGL-1–containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.


Blood ◽  
2002 ◽  
Vol 100 (13) ◽  
pp. 4470-4477 ◽  
Author(s):  
Ulf Sjöbring ◽  
Ulrika Ringdahl ◽  
Zaverio M. Ruggeri

We have characterized 2 distinct mechanisms through which infectious agents may promote platelet adhesion and thrombus formation in flowing blood, thus contributing to the progression of disease. In one case, the process initiates when the integrin αIIbβ3 mediates platelet arrest onto immobilized bacterial constituents that have bound plasma fibrinogen. If blood contains antibodies against the bacteria, immunoglobulin (Ig) G may cluster on the same surface and activate adherent platelets through the FcγRIIA receptor, leading to thrombus growth. As an alternative, bacteria that cannot bind fibrinogen may attach to substrates, such as immobilized plasma proteins or components of the extracellular matrix, which also support platelet adhesion. As a result of this colocalization, IgG bound to bacteria can activate neighboring platelets and induce thrombus growth regardless of their ability to initiate platelet-surface contact. Our results demonstrate that intrinsic constituents of infectious agents and host proteins play distinct but complementary roles in recruiting platelets into thrombi, possibly contributing to complications of acute and chronic infections.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3658-3658
Author(s):  
Junmei Chen ◽  
Miguel A. Cruz ◽  
José A. López

Abstract In 1999, Wu et al found that blood from patients with type 3 von Willebrand disease (lacking VWF in both plasma and platelets) could not form thrombi on a collagen surface (Arterioscler. Thromb. Vasc Biol2000, 201661–1667). This suggested that VWF was absolutely required for the accumulation of platelets in thrombi under flow, even in the presence of fibrinogen. Platelets have two VWF receptors, the GP Ib-IX-V complexes and αIIbβ3 , the former mediating the initial tethering and attachment of platelets onto VWF and the latter being involved in platelet-platelet contacts. GP Ib-IX-V binds VWF within the A1 domain and αIIbβ3 is known to bind an Arg-Gly-Asp (RGD) sequence in the C1 domain. In the study of Wu et al, reconstitution of the VWF-deficient plasma with recombinant VWF missing the A1 domain failed to restore thrombus formation, even when the collagen surface was first coated with wild-type VWF to allow platelet attachment. The A1 domain is thus important not only for initial platelet adhesion but also for thrombus accumulation, possibly by binding another platelet receptor. Consistent with this, the number of binding sites for the isolated A1 domain on the platelet surface is more than twice the number of GP Ibα polypeptides. The receptor responsible for these binding sites is unknown but αIIbβ3 is a good candidate given its high copy number and the marked defect seen in platelet thrombus formation in its absence or blockade. Of interest, while deletion of A1 prevented thrombus formation in the studies of Wu et al, mutation of the VWF RGD sequence did not. We therefore examined whether αIIbβ3 also binds within the VWF A1 domain. We found the following. 1) Purified, unactivated αIIbβ3 binds to immobilized A1 domain, binding blocked by antibodies to either αIIbβ3 or A1. 2) Unactivated αIIbβ3 does not interact with immobilized full-length VWF, but binds VWF in the presence of ristocetin. The binding of αIIbβ3 to both VWF and isolated A1 is blocked by the αIIbβ3 antibody c7E3 but not by RGD peptides, and by the A1 antibody 6G1. This suggests that the αIIbβ3 binding site in the A1 domain may overlap the 6G1 epitope (residues 700-709), which is distinct from the GPIbα binding site. 3) 6G1 inhibits shear-induced platelet aggregation—a process that requires both GP Ibα and αIIbβ3—without blocking GP Ibα binding. 4) Platelets firmly adhere on the surface containing A1 and cross-linked collagen-related peptide (CRP), a potent GP VI agonist, at high shear stresses. The CRP-GP VI interaction is not strong enough to arrest platelets under flow, suggesting that GP VI signals could activate αIIbβ3, and αIIbβ3 could mediate firm adhesion. Consistent with this, the αIIbβ3 antibody c7E3 prevented firm platelet adhesion. In summary, we find that αIIbβ3 binds to the A1 domain, in or near the sequence of Glu700-Asp709. In addition to its apparent role in platelet-platelet interactions during thrombus growth, the binding of αIIbβ3 to the VWF A1 domain may also facilitate the binding of GP Ibα to a distinct region of A1, as the site of αIIbβ3 overlaps the binding site of ristocetin and 6G1, both which induce VWF to bind GP Ibα. Therefore, by binding to the same site as 6G1 and ristocetin in the C-terminal peptide of A1, αIIbβ3 may regulate the affinity of A1 for GP Ibα in flowing blood.


2021 ◽  
Vol 10 (22) ◽  
pp. 5349
Author(s):  
Lydie Crescence ◽  
Markus Kramberg ◽  
Martine Baumann ◽  
Markus Rey ◽  
Sebastien Roux ◽  
...  

Selatogrel, a potent and reversible antagonist of the P2Y12 receptor, inhibited FeCl3-induced thrombosis in rats. Here, we report the anti-thrombotic effect of selatogrel after subcutaneous applications in guinea pigs and mice. Selatogrel inhibited platelet function only 10 min after subcutaneous application in mice. In addition, in a modified Folts thrombosis model in guinea pigs, selatogrel prevented a decrease in blood-flow, indicative of the inhibition of ongoing thrombosis, approximately 10 min after subcutaneous injection. Selatogrel fully normalised blood flow; therefore, we speculate that it may not only prevent, but also dissolve, platelet thrombi. Thrombus dissolution was investigated using real-time intravital microscopy in mice. The infusion of selatogrel during ongoing platelet thrombus formation stopped growth and induced the dissolution of the preformed platelet thrombus. In addition, platelet-rich thrombi were given 30 min to consolidate in vivo. The infusion of selatogrel dissolved the preformed and consolidated platelet thrombi. Dissolution was limited to the disintegration of the occluding part of the platelet thrombi, leaving small mural platelet aggregates to seal the blood vessel. Therefore, our experiments uncovered a novel advantage of selatogrel: the dissolution of pre-formed thrombi without the disintegration of haemostatic seals, suggesting a bipartite benefit of the early application of selatogrel in patients with acute thrombosis.


1976 ◽  
Vol 35 (02) ◽  
pp. 334-341 ◽  
Author(s):  
Th B. Tschopp ◽  
H.R Baumgartner

SummarySubendothelium of rabbit aorta and fibrillar collagen were exposed to citrated human or rabbit blood which was circulated through a perfusion chamber under flow conditions similar to those found in arteries. The resulting platelet adhesion and subsequent formation of platelet micro thrombi on the exposed surfaces were measured in 0.8 μm thick sections by a morphometry technique using light microscopy.Removal of plasma ADP by the substrate-enzyme combination CP-CPK (creatine phosphate-creatine phosphokinase; 3 mM and 90 U/ml blood) did not affect the initial attachment and spreading of platelets on subendothelium, whereas platelet thrombus formation was strongly inhibited. On free collagen fibrils CP-CPK was much less inhibitory on platelet thrombus formation but platelet adhesion again was not affected. It is concluded that platelet aggregation induced by thrombogenic surfaces in the presence of arterial blood flow is at least partially governed by ADP released from adhering platelets. Platelet adhesion to the examined surfaces, however, does not seem to be mediated by plasma ADP.


1987 ◽  
Author(s):  
E Bastida ◽  
G Escolar ◽  
R Castillo ◽  
A Ordinas ◽  
J J Sixma

Fibronectin (FN) plays a role in several adhesion mediated functions including the interaction of platelets with subendothelium.We investigated the role of plasma FN in platelet adhesion and platelet thrombus formation under flow conditions.To do this we used two different perfusion models:1)the annular chamber with α -chymotrypsin-treated rabbit vessel segments and 2)the flat chamber with coverslips coated with fibrillar purified human collagen type III.Perfusates consisted of washed platelets, and washed red blood celIs,suspended in normal or FN-depleted plasma.Perfusions were carried out for 10 min at shear rates of 300 or 1300 sec™1 Platelet deposition and thrombus dimensions were morphometrically evaluated by a computerized system. We found that depletion of plasma FN significantly reduced the percentage of total coverage surface and percentage of platelet thrombus, at both shear rates studied, and in both perfusion systems (p < 0.01)(p < 0.01).The dimensions of the platelet thrombi formed in perfusions at high shear rate were also significantly reduced in perfusions carried out with FN-depleted plasma.(p < 0.01). Addition of purified FN to FN-depleted perfusates restored all the values to those measured in the control perfusions.These results indicate that, in addition to supporting platelet adhesion to the subendothelium and to fibrillar collagen, FN contributes to platelet thrombus formation under flow conditions.


Sign in / Sign up

Export Citation Format

Share Document