Identification of a Binding Site for Integrin αIIbβ3 in the von Willebrand factor (VWF) A1 Domain: Dual Roles for the A1 Domain in Platelet Thrombus Formation.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3658-3658
Author(s):  
Junmei Chen ◽  
Miguel A. Cruz ◽  
José A. López

Abstract In 1999, Wu et al found that blood from patients with type 3 von Willebrand disease (lacking VWF in both plasma and platelets) could not form thrombi on a collagen surface (Arterioscler. Thromb. Vasc Biol2000, 201661–1667). This suggested that VWF was absolutely required for the accumulation of platelets in thrombi under flow, even in the presence of fibrinogen. Platelets have two VWF receptors, the GP Ib-IX-V complexes and αIIbβ3 , the former mediating the initial tethering and attachment of platelets onto VWF and the latter being involved in platelet-platelet contacts. GP Ib-IX-V binds VWF within the A1 domain and αIIbβ3 is known to bind an Arg-Gly-Asp (RGD) sequence in the C1 domain. In the study of Wu et al, reconstitution of the VWF-deficient plasma with recombinant VWF missing the A1 domain failed to restore thrombus formation, even when the collagen surface was first coated with wild-type VWF to allow platelet attachment. The A1 domain is thus important not only for initial platelet adhesion but also for thrombus accumulation, possibly by binding another platelet receptor. Consistent with this, the number of binding sites for the isolated A1 domain on the platelet surface is more than twice the number of GP Ibα polypeptides. The receptor responsible for these binding sites is unknown but αIIbβ3 is a good candidate given its high copy number and the marked defect seen in platelet thrombus formation in its absence or blockade. Of interest, while deletion of A1 prevented thrombus formation in the studies of Wu et al, mutation of the VWF RGD sequence did not. We therefore examined whether αIIbβ3 also binds within the VWF A1 domain. We found the following. 1) Purified, unactivated αIIbβ3 binds to immobilized A1 domain, binding blocked by antibodies to either αIIbβ3 or A1. 2) Unactivated αIIbβ3 does not interact with immobilized full-length VWF, but binds VWF in the presence of ristocetin. The binding of αIIbβ3 to both VWF and isolated A1 is blocked by the αIIbβ3 antibody c7E3 but not by RGD peptides, and by the A1 antibody 6G1. This suggests that the αIIbβ3 binding site in the A1 domain may overlap the 6G1 epitope (residues 700-709), which is distinct from the GPIbα binding site. 3) 6G1 inhibits shear-induced platelet aggregation—a process that requires both GP Ibα and αIIbβ3—without blocking GP Ibα binding. 4) Platelets firmly adhere on the surface containing A1 and cross-linked collagen-related peptide (CRP), a potent GP VI agonist, at high shear stresses. The CRP-GP VI interaction is not strong enough to arrest platelets under flow, suggesting that GP VI signals could activate αIIbβ3, and αIIbβ3 could mediate firm adhesion. Consistent with this, the αIIbβ3 antibody c7E3 prevented firm platelet adhesion. In summary, we find that αIIbβ3 binds to the A1 domain, in or near the sequence of Glu700-Asp709. In addition to its apparent role in platelet-platelet interactions during thrombus growth, the binding of αIIbβ3 to the VWF A1 domain may also facilitate the binding of GP Ibα to a distinct region of A1, as the site of αIIbβ3 overlaps the binding site of ristocetin and 6G1, both which induce VWF to bind GP Ibα. Therefore, by binding to the same site as 6G1 and ristocetin in the C-terminal peptide of A1, αIIbβ3 may regulate the affinity of A1 for GP Ibα in flowing blood.

Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3403-3411 ◽  
Author(s):  
Ana Kasirer-Friede ◽  
Maria Rita Cozzi ◽  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Zaverio M. Ruggeri ◽  
...  

Abstract Platelet adhesion to von Willebrand factor (VWF) activates αIIbβ3, a prerequisite for thrombus formation. However, it is unclear whether the primary VWF receptor, glycoprotein (GP) Ib-IX-V, mediates αIIbβ3 activation directly or through other signaling proteins physically associated with it (eg, FcR γ-chain), possibly with the contribution of other agonist receptors and of VWF signaling through αIIbβ3. To resolve this question, human and GP Ibα transgenic mouse platelets were plated on dimeric VWF A1 domain (dA1VWF), which engages only GP Ib-IX-V, in the presence of inhibitors of other agonist receptors. Platelet adhesion to dA1VWF induced Src kinase-dependent tyrosine phosphorylation of the FcR γ-chain and the adapter molecule, ADAP, and triggered intracellular Ca2+ oscillations and αIIbβ3 activation. Inhibition of Ca2+ oscillations with BAPTA-AM prevented αIIbβ3 activation but not tyrosine phosphorylation. Pharmacologic inhibition of protein kinase C (PKC) or phosphatidylinositol 3-kinase (PI 3-kinase) prevented αIIbβ3 activation but not Ca2+ oscillations. Inhibition of Src with 2 distinct compounds blocked all responses downstream of GP Ib-IX-V under static or flow conditions. However, dA1VWF-induced responses were reduced only slightly in GP Ibα transgenic platelets lacking FcR γ-chain. These data establish that GP Ib-IX-V itself can signal to activate αIIbβ3, through sequential actions of Src kinases, Ca2+ oscillations, and PI 3-kinase/PKC. (Blood. 2004;103:3403-3411)


Haematologica ◽  
2019 ◽  
Vol 105 (11) ◽  
pp. 2631-2638 ◽  
Author(s):  
Kazuya Sakai ◽  
Tatsuhiko Someya ◽  
Kaori Harada ◽  
Hideo Yagi ◽  
Taei Matsui ◽  
...  

von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the United States. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggested that TAGX-0004 possessed better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 472-472
Author(s):  
Adam D Munday ◽  
Yuandong Peng ◽  
Yunmei Wang ◽  
Daniel I Simon ◽  
Jose A. Lopez

Abstract Abstract 472 To maintain hemostasis, the human body uses more that 7,000 platelets/μl of blood a day; 3.5 billion platelets a day in a 70 kg adult male. Lack of fully functional platelets results in bleeding disorders such as Bernard-Soulier syndrome, Glanzmann thrombasthenia and platelet-type von Willebrand disease. It is becoming increasingly well appreciated that in addition to their hemostatic role, platelets play important roles in inflammation and wound healing. The initial step of platelet adhesion is mediated by the glycoprotein (GP) Ib-IX-V complex on the platelet surface, which binds von Willebrand factor (VWF). This interaction leads to activation of the integrin αIIbβ3, platelet arrest, and spreading and aggregation. The GPIb-IX-V complex also has a key role in inflammation, mediating a key interaction of platelets with leukocytes by binding the integrin Mac-1 (αMβ2, CD11b/CD18). This interaction mediates the firm adhesion of leukocytes on platelet thrombi, enabling their migration through the thrombus into the vessel wall. Interestingly, the insert domain (I-domain) of the αM subunit of Mac-1 has a similar 3-dimensional structure to the A1 domain of VWF. Our previous studies showed that the I-domain of Mac-1 binds the C-terminal flanking sequence of GPIbα (Phe201-Gly268), demonstrated by the ability of the anti-GPIbα monoclonal antibody AP1 to inhibit the interaction. The epitope of AP1 has been mapped to a 10-amino acid sequence spanning Arg218 to Tyr228. In the current investigation, we constructed a series of cell lines expressing mutants of human GPIbα, either by replacement of the human sequence with the corresponding dog sequence (dog GPIbα does not bind human Mac-1) or by targeted mutagenesis, and tested their ability to bind the recombinant αM I domain. TheGPIbα region Phe201–Asn223 was crucial for Mac-1 binding, with residues Arg218, Asp222 and Asn223 playing vital roles. In addition, a peptide containing the AP1 epitope (Leu214–Val229) bound αM I-domain specifically and saturably. Peptide binding was blocked by LPM19c, a monoclonal anti-αM I-domain antibody, and soluble GPIbα, and by the M2 peptide, which corresponds to the GPIbα–binding site in the αM I domain (Phe201–Lys217). Peptide binding was also blocked by an antibody against the M2 sequence. The AP1 peptide inhibited the attachment of GPIb-IX complex–expressing CHO cells to immobilized αM I domain, and the adhesion of THP-1 cells—a monocytic cell line expressing Mac-1—to immobilized GPIbα. In summary, we have defined the GPIbα sequence Arg218 to Ala224 as a critical binding site for Mac-1. Because a peptide corresponding to this region inhibits GPIbα binding to Mac-1 but blocks neither platelet adhesion to immobilized VWF nor thrombin-induced platelet aggregation, it has potential to guide the development of agents that will specifically inhibit leukocyte-platelet complexes that promote vascular inflammation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 103 (5) ◽  
pp. 1741-1746 ◽  
Author(s):  
Jeffrey F. W. Keuren ◽  
Dominique Baruch ◽  
Paulette Legendre ◽  
Cécile V. Denis ◽  
Peter J. Lenting ◽  
...  

AbstractFibrin is actively involved in platelet reactions essential for thrombus growth, in which von Willebrand factor (VWF) might be an important mediator. The aim of this study was to localize VWF domains that bind to fibrin and to determine their relevance in platelet adhesion. VWF binds specifically to fibrin with an apparent Kd of 2.2 μg/mL. Competition in the presence of 2 complementary fragments, SpIII (residues 1-1365) and SpII (residues 1366-2050), indicated that the high affinity binding site for fibrin is located in the C-terminal part, thus distinct from the A domains. Comparison of 2 deleted rVWF (ΔD4B-rVWF, ΔC1C2-rVWF) suggested that the C1C2 domains contained a fibrin binding site. This site is distinct from RGD, as shown by binding of D1746G-rVWF to fibrin. Perfusion studies at high shear rate demonstrated that C1C2 domains were required for optimal platelet adhesion to fibrin. With the use of a VWF-deficient mouse model, it was found that plasma VWF is critical for platelet tethering and adhesion to fibrin. These results suggest a dual role of fibrin-bound VWF in thrombus formation: first, fibrin-bound VWF is critical in the recruitment of platelets by way of glycoprotein (GP) Ib, and, second, it contributes to stationary platelet adhesion by way of binding to activated αIIbβ3.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3659-3659
Author(s):  
Wolfgang Bergmeier ◽  
Crystal L. Piffath ◽  
Zaverio M. Ruggeri ◽  
Jerry L. Ware ◽  
Denisa D. Wagner

Abstract GPIbα binding to von Willebrand factor (vWf) exposed at a site of vascular injury is the first step in the formation of a hemostatic plug. In addition, GPIbα binding to platelet-bound vWf has previously been shown to play a key role in the incorporation of circulating platelets into a growing thrombus. However, studies in vWf-deficient mice demonstrated delayed but not absent arterial thrombus formation, suggesting that GPIbα may bind a ligand other than vWf to facilitate platelet adhesion, or that a platelet surface receptor other than GPIbα can mediate platelet adhesion in arterioles in the absence of vWf. Here we studied thrombus formation in transgenic mice expressing GPIbα in which the extracytoplasmic sequence has been replaced by an isolated domain of the human interleukin 4 receptor (IL4R-tg mice). Early platelet adhesion to ferric chloride-treated mesenteric arterioles in IL4R-tg mice was decreased by >98% when compared with controls. As a consequence, thrombus formation was completely inhibited in all of the mutant mice. To study the role of GPIbα in platelet adhesion to already adherent platelets, we studied thrombus formation in wild-type mice infused with wild-type platelets labeled with calcein-green and IL4R-tg platelets labeled with calcein-orange/red. Upon ferric chloride-induced injury, wild-type but not IL4R-tg platelets incorporated into the growing thrombus. A similar result was observed with wild-type platelets treated with O-sialoglycoprotein endopeptidase to remove the 45 kD N-terminal domain of GPIbα. In summary, our studies in GPIbα mutant mice provide additional evidence that under arterial flow conditions GPIbα is the only receptor expressed on the platelet surface that mediates initial platelet adhesion to the subendothelium as well as to already adherent platelets. Our data further suggest that a ligand other than vWf may contribute to GPIbα-dependent platelet adhesion to subendothelium and to a growing thrombus.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 259-259
Author(s):  
Miguel A. Cruz ◽  
K. Vinod Vijayan

Abstract Abstract 259 Platelet adhesion, activation, and aggregation in the vasculature are necessary events in both life-saving hemostasis and pathological thrombosis. Thrombosis may occur in patients presenting with several clinical conditions including atherosclerosis, cardiovascular disease, and inflammation. Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that plays a critical role in mediating platelet adhesion, activation, and aggregation on the exposed subendothelium in order to maintain hemostasis under arterial flow conditions. On the other hand, VWF permits the stabilization of platelets adherent to components of ruptured atherosclerotic plaques, leading to artery-occluding thrombus formation. The initial interaction of activated or hyperadhesive VWF with platelets occurs via the interaction between the A1 domain of VWF and the platelet receptor glycoprotein (GP)Ibα. This engagement is responsible for reducing the velocity of rapidly flowing platelets, allowing the rolling platelets to interact with the second binding site on VWF for the platelet receptor GPIIb/IIIa; a binding site that is located within the C domains of VWF. Therefore, the hyperadhesive property of VWF apparently relies on the synchronized interaction of the two platelet surface receptors, GPIbα and GPIIb/IIIa. Despite this concept, we and others have speculated that other binding site in VWF synergistically works with the A1 domain to quickly capture the extremely fast flowing platelets. We have obtained interesting results from studies using a monomeric A1A2A3 domain protein that lacks the binding site for GPIIb/IIIa. For example, the rolling velocity of platelets over an A1A2A3-coated surface was markedly lower than that seen with use of the single A1 domain. This observation suggests the possibility of an additional binding site in the A domains for platelets. Given the similar hyperadhesive features of the A1A2A3 protein and plasma VWF, we proposed to look for a potential receptor on platelets with a recognition site within the A domains of VWF. We suggested examining vimentin because, it was identified as a binding protein for the isolated A2 domain of VWF in our laboratory, and vimentin has been found on the surface of platelets. First, both full length VWF and recombinant A1A2A3 proteins efficiently bound to human vimentin only in the presence of the modulator ristocetin, indicating that vimentin preferably interact with the active conformation of VWF. In fact, a constitutively active A1A2A3 protein (containing a gain-of-function mutation in A1 domain) had a binding activity for vimentin higher than that of wild type (WT) A1A2A3 in the absence of ristocetin. Second, anti-vimentin monoclonal antibody blocked the interaction of that mutant A1A2A3 to activated washed platelets using flow cytometry. Third, we then examined the effect of anti-vimentin antibody on flow-dependent platelet adhesion to A1A2A3-coated surface at high shear stress. In comparison to whole blood incubated with irrelevant IgG molecule as a negative control, the anti-vimentin antibody blocked 75% platelet adhesion to the triple-A domain protein. Finally, whole blood from vimentin-deficient or WT mice was perfused over a surface coated with murine VWF at high shear rate. In comparison to platelets from WT mice, vimentin-deficient platelets had a significant reduced platelet adhesion to VWF (25% of WT). Similarly, vimentin-deficient platelets had a reduced platelet adhesion to collagen (20% of WT) under high flow conditions. This platelet-collagen interaction is initially mediated by VWF. These interesting results indicate that vimentin on platelets serves as a receptor for VWF, and this binding may participate in the initial interaction of circulating platelets with VWF under flow conditions. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 84 (11) ◽  
pp. 897-903 ◽  
Author(s):  
Mark Furman ◽  
Paquita Nurden ◽  
Michael Berndt ◽  
Alan Nurden ◽  
Stephen Benoit ◽  
...  

SummaryThe only known function of the 41 amino acid cleaved peptide (TR1-41) of the seven transmembrane domain thrombin receptor (PAR1) is to activate platelets (as determined by aggregation, surface P-selectin, and fibrinogen binding to activated GPIIb-IIIa). We now demonstrate that TR1-41 results in a concentration-dependent decrease in the platelet surface expression of each component of the GPIb-IX-V complex, as determined by flow cytometry with a panel of monoclonal antibodies (including 6D1, directed against the von Willebrand factor binding site on GPIbα, and TM60, directed against the thrombin binding site on GPIbα). TR1-41 also decreased ristocetin-induced platelet agglutination. Immunoblotting after incubation of platelets with TR1-41 revealed neither a loss of platelet GPIb nor increase in supernatant GPIb fragments. As demonstrated by immunoelectron microscopy, TR1-41 resulted in a redistribution of GPIb, GPIX, and GPV from the platelet surface to the surface-connected canalicular system (SCCS). In summary, the cleaved peptide (TR1-41) of PAR1 results in a redistribution of the platelet surface GPIb-IX-V complex to the SCCS, thereby negatively regulating the GPIbα binding sites for von Willebrand factor and thrombin.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3661-3661
Author(s):  
Miguel A. Cruz ◽  
Liza D. Morales

Abstract The interaction of plasma von Willebrand factor (VWF) with collagen at the site of vascular injury plays a critical role in the initiation of thrombus formation under high shear stress. It does this by forming a bridge between the fibrils of collagen in the subendothelium and the platelet glycoprotein Ib-IX-V complex (GPIb). The A1 domain of VWF is the binding site for GPIb whereas the collagen-function of VWF is controlled by both A1 and A3 domains. The VWF-A3 domain is important to support binding to fibrils of collagen Types I and III while the A1 domain is involved in the binding to microfibrillar collagen Type VI. It is assumed that the interaction of VWF with fibrillar collagen (via the A3 domain) may regulate the expression of the GPIb-binding site in the A1 domain. However, there is no a definite data to substantiate that hypothesis. Our goal was to demonstrate that a direct interaction between the A1 domain and fibrillar collagen Types I or III exposes the GPIb binding site. Thus, we postulated that platelet GPIb is able to interact with isolated A1 domain that is bound to collagen. We have demonstrated that the VWF-A1 protein binds specifically to human placenta collagen Types I and III with a KD ~ 200 nM by using surface plasmon resonance (SPR). Using plasma-free blood, we have provided strong evidence that isolated VWF-A1 domain bound to either collagen Type I or III is able to support platelet adhesion under high flow conditions. This platelet interaction was effectively blocked with antibodies against either GPIb or A1 domain. These results clearly show the ability of the A1 domain to concurrently interact with both GPIb and collagen fibrils and they also suggest that the collagen-A1 binding may regulate the expression of the GPIb-binding site in the A1 domain. To test this hypothesis, we analyzed three residues that in a previous mutagenesis study they increased the binding of VWF to GPIb, reasoning that they may have an effect on the collagen binding activity as well. The three residues are located in the a7 helix (rear face) of the folded A1 domain and mutagenesis studies of other I(A)-domains have demonstrated that this helix plays a role in regulating the affinity of the ligand-binding. We introduced point mutations into the 3 residues and the recombinant mutant proteins were expressed in bacteria. The three mutants (R687E, D688R, and E689R) were purified as wild type and their structural integrity was confirmed with three conformation-specific antibodies. All the mutants bound to both collagens Type I or III with an affinity much higher than the wild type (WT) (KD~ 9 -1 nM). The mutants were assessed by their ability to mediate platelet adhesion to collagen, and their ability to inhibit both ristocetin-induced platelet agglutination and shear-induced platelet aggregation. Interestingly, in the three assays the R687E mutant had an activity higher than WT while the D688R had a markedly decrease activity. The mutant E689R had an activity similar to that of WT for the three assays. Together our data indicate that a direct association between the VWF-A1 domain and collagen fibrils influences the expression of GPIb binding function in VWF. Further, these data indicate that residue R687 located in the a7 helix plays a novel and important role in modulating the collagen/A1/GPIb binding.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 33-33
Author(s):  
Alfonso Vignoli ◽  
Paola van der Meijden ◽  
Marina Marchetti ◽  
Cinzia Giaccherini ◽  
Serena Tessarolo ◽  
...  

Abstract Background Essential Thrombocythemia (ET) and Polycythemia Vera (PV) are MPNs characterized by a high incidence of both arterial and venous thrombosis, and microcirculatory disturbances. Platelet abnormalities have been variably involved in the thrombotic diathesis of these patients, without providing conclusive evidence. Remarkably, no studies have explored so far the MPN platelet thrombus formation capacity underflow conditions. Aim In order to evaluate whether and to what extent the MPN platelet membrane abnormalities may influence their interactions with the vessel wall components in a dynamic system, we wanted to characterize the ET and PV platelet adhesion capacity under flow conditions, by using an in vitro system based on a parallel flow chamber connected to the EVOS fluorescence microscope. The effects of the V617F JAK2 mutational status, cytoreductive therapy, and circulating von Willebrand Factor (vWF) on platelet adhesion in this system were also explored. Methods Nine ET (3M/6F; age 63 years, range 60-81) and 6 PV (3M/4F; age 74 years, range 58-82) patients were enrolled into the study upon informed consent. Eleven healthy subjects (5M/6F; age 44 years, range 35-55) acted as a control group (CTR). Peripheral venous whole blood was withdrawn in sodium citrate, recalcified in the presence of heparin, and perfused over a collagen-coated surface for 4 min at a shear rate of 1000 s-1. Platelets were then stained with an anti-CD62P (P-selectin)-FITC antibody as a platelet activation index, and annexin V-AlexaFluor647 as a measure of the procoagulant phosphatidylserine (PS) expression. After staining, images of adherent platelets in random fields were taken using phase contrast and fluorescence imaging with the EVOS fluorescence microscope system. Results were the mean±SD of the percentage of area covered by all platelets, or as the % of adherent platelets positive to either P-selectin or annexin V. In parallel, plasma vWF antigen and activity levels were measured by ELISA. Statistical analysis was performed by SPSS software package. Results Platelet adhesion was significantly greater (p<0.05) in both ET (49.3±14.5%) and PV patients (55.3±12.7%) compared to controls (31.6±7.3%). Among patients, platelet adhesion was significantly (p<0.05) increased in those positive for the V617F JAK2 mutation compared to the negative ones, with the highest values in the homozygous subjects. Patients on hydroxyurea (HU) therapy (n=7) had significantly lower platelet adhesion (45.2±13.0%) compared to non-HU-treated patients (56.9±10.4%; p<0.05).The % platelet adhesion directly related to either platelet (r=0.623, p=0.001) and leukocyte (r=0.506, p<0.01) counts, but not to plasma vWF levels. Multivariate regression analysis adjusted for age, sex, and HU therapy, confirmed platelet count and V617F JAK2 mutation as significant determinants of platelet adhesion. Although adhesion was increased, the platelet surface expression of P-selectin and PS was reduced in ET (P-sel: 70±11% pos. platelets; PS: 11±6% pos. platelets) and PV (P-sel: 66±13%; PS: 9±5%) patients compared to controls (P-sel: 74±8%; PS: 20±8%). Conclusions The data show for the first time, in MPN patients, an increased platelet adhesion capacity to collagen under flow conditions, indicating a greater thrombus formation potential. This phenomenon is likely not related to the expression of membrane P-selectin and phosphatidylserine, but is significantly influenced by the V617F JAK2 mutation burden and is sensitive to the cytoreductive treatment with HU. Prospective studies are worth to establish the role of the EVOS assay in assessing the levels of thrombotic risk in MPN patients. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 75 (06) ◽  
pp. 950-958 ◽  
Author(s):  
Hanneke L Lankhof ◽  
Maggy van Hoeij ◽  
Marion E Schiphorst ◽  
Madelon Bracke ◽  
Ya-Ping Wu ◽  
...  

Summaryvon Willebrand factor (vWF) mediates platelet adhesion at sites of vascular damage. It acts as a bridge between receptors on platelets and collagens present in the connective tissue. Two collagen binding sites have been identified on the A1 and A3 domain of the vWF subunit. To study the functional importance of these binding sites, we have made two deletion mutants that lack the A1 domain (residues 478-716; ΔA1-vWF; Sixma et al. Eur. J. Biochem. 196,369,1991 [1]) or the A3 domain (residues 910-1113; ΔA3-vWF). After transfection in baby hamster kidney cells overexpressing furin, the mutants were processed and secreted efficiently. Ristocetin or botrocetin induced platelet binding was normal for ΔA3-vWF as was binding to heparin and factor VIII. As reported by Sixma et al. (1) ΔAl-vWF still binds to collagen type III, indicating that the A3 domain is sufficient for the interaction. In the current study, we investigated the binding of ΔA3-vWF to collagen type III. When preincubated on collagen type III it did not support platelet adhesion under flow conditions, whereas it was able to support platelet adhesion when coated directly to a glass surface. The binding of 125I-ΔA3-vWF to collagen was specific but maximal binding was about 40 times less compared to 125I-vWF. When added at 25 times excess, ΔA3-vWF did not compete with 125I-vWF for binding to collagen type III, whereas ΔAl-vWF did. The binding of 125I-ΔA3-vWF could be blocked by excess unlabeled vWF but not by ΔA1-vWF. In conclusion, we demonstrate that the A3 domain in vWF contains the major collagen binding site. The major binding site present on the A3 domain and the minor site present on A1 bind to different sites on collagen.


Sign in / Sign up

Export Citation Format

Share Document