A Survey of the Effectiveness of Prothrombin Complex Concentrates in Controlling Hemorrhage in Patients with Hemophilia and Anti-Factor VIII Antibodies

1980 ◽  
Vol 44 (01) ◽  
pp. 039-042 ◽  
Author(s):  
Philip M Blatt ◽  
Doris Ménaché ◽  
Harold R Roberts

SummaryThe treatment of patients with hemophilia A and anti-Factor VIII antibodies is difficult. Between July 1977 and June 1978, a survey was carried out by an ad hoc working party of the subcommittee on Factor IX concentrates of the International Committee on Thrombosis and Hemostasis to assess the effectiveness of Prothrombin Complex Concentrates in controlling hemorrhage in these patients. The results are presented in this paper and, although subjective, support the view that these concentrates are not as effective in patients with inhibitors as Factor VIII concentrates are in patients without inhibitors.

1977 ◽  
Vol 38 (02) ◽  
pp. 0514-0523 ◽  
Author(s):  
Philip M. Blatt ◽  
Gilbert C. White ◽  
Campbell W. McMillan ◽  
Harold R. Roberts

SummaryBleeding episodes in patients with hemophilia A with anti-factor VIII antibodies are frequently difficult to treat. Factor VIII concentrates administered by continuous infusion or prothrombin complex concentrates (PCC) have been used for treatment. Hemophilia A patients with inhibitors who respond to factor VIII concentrates generally have low to moderate inhibitor titers (generally less than 20 Bethesda units). Those patients who receive PCC are quite difficult to evaluate but promising clinical responses have clearly been observed. This paper describes our experience with both modalities of therapy and will offer specific guidelines for such therapy.


Blood ◽  
2001 ◽  
Vol 98 (8) ◽  
pp. 2571-2573 ◽  
Author(s):  
Alberta Azzi ◽  
Riccardo De Santis ◽  
Massimo Morfini ◽  
Krystyna Zakrzewska ◽  
Roberto Musso ◽  
...  

Abstract Recombinant factor VIII and factor IX concentrates, human-plasma–derived albumin, and samples from previously untreated patients with hemophilia were examined for the presence of TT virus (TTV) by using polymerase chain reaction testing. Blood samples from the patients were obtained prospectively before and every 3 to 6 months after therapy was begun. TTV was detected in 23.5% of the recombinant-product lots and 55.5% of the albumin lots tested. Only first-generation factor VIII recombinant concentrates stabilized with human albumin were positive for TTV, whereas all second-generation (human protein–free) concentrates were negative for the virus. In 59% of patients treated with either first- or second-generation recombinant factor concentrates, TTV infection developed at some point after the initial infusion. Infection with TTV in these patients before and after treatment did not appear to be clinically important. Thus, first-generation recombinant factor VIII concentrates may contain TTV and the source of the viral contamination may be human albumin.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 17-17
Author(s):  
Dougald Monroe ◽  
Mirella Ezban ◽  
Maureane Hoffman

Background.Recently a novel bifunctional antibody (emicizumab) that binds both factor IXa (FIXa) and factor X (FX) has been used to treat hemophilia A. Emicizumab has proven remarkably effective as a prophylactic treatment for hemophilia A; however there are patients that still experience bleeding. An approach to safely and effectively treating this bleeding in hemophilia A patients with inhibitors is recombinant factor VIIa (rFVIIa). When given at therapeutic levels, rFVIIa can enhance tissue factor (TF) dependent activation of FX as well as activating FX independently of TF. At therapeutic levels rFVIIa can also activate FIX. The goal of this study was to assess the role of the FIXa activated by rFVIIa when emicizumab is added to hemophilia A plasma. Methods. Thrombin generation assays were done in plasma using 100 µM lipid and 420 µM Z-Gly-Gly-Arg-AMC with or without emicizumab at 55 µg/mL which is the clinical steady state level. The reactions were initiated with low (1 pM) tissue factor (TF). rFVIIa was added at concentrations of 25-100 nM with 25 nM corresponding to the plasma levels achieved by a single clinical dose of 90 µg/mL. To study to the role of factor IX in the absence of factor VIII, it was necessary to create a double deficient plasma (factors VIII and IX deficient). This was done by taking antigen negative hemophilia B plasma and adding a neutralizing antibody to factor VIII (Haematologic Technologies, Essex Junction, VT, USA). Now varying concentrations of factor IX could be reconstituted into the plasma to give hemophilia A plasma. Results. As expected, in the double deficient plasma with low TF there was essentially no thrombin generation. Also as expected from previous studies, addition of rFVIIa to double deficient plasma gave a dose dependent increase in thrombin generation through activation of FX. Interestingly addition of plasma levels of FIX to the rFVIIa did not increase thrombin generation. Starting from double deficient plasma, as expected emicizumab did not increase thrombin generation since no factor IX was present. Also, in double deficient plasma with rFVIIa, emicizumab did not increase thrombin generation. But in double deficient plasma with FIX and rFVIIa, emicizumab significantly increased thrombin generation. The levels of thrombin generation increased in a dose dependent fashion with higher concentrations of rFVIIa giving higher levels of thrombin generation. Conclusion. Since addition of FIX to the double deficient plasma with rFVIIa did not increase thrombin generation, it suggests that rFVIIa activation of FX is the only source of the FXa needed for thrombin generation. So in the absence of factor VIII (or emicizumab) FIX activation does not contribute to thrombin generation. However, in the presence of emicizumab, while rFVIIa can still activate FX, FIXa formed by rFVIIa can complex with emicizumab to provide an additional source of FX activation. Thus rFVIIa activation of FIX explains the synergistic effect in thrombin generation observed when combining rFVIIa with emicizumab. The generation of FIXa at a site of injury is consistent with the safety profile observed in clinical use. Disclosures Monroe: Novo Nordisk:Research Funding.Ezban:Novo Nordisk:Current Employment.Hoffman:Novo Nordisk:Research Funding.


PEDIATRICS ◽  
1984 ◽  
Vol 74 (2) ◽  
pp. 290-291
Author(s):  
MARGARET W. HILGARTNER

Achievement of hemostasis in patients with hemophilia who develop an inhibitor is known to be much more difficult than in the patient without an inhibitor although the frequency of bleeding is usually not increased. The introduction of prothrombin complex concentrates (PCC) and the activated prothrombin complex concentrates (APCC) containing an inhibitor bypassing activity afford a treatment modality that has been useful in some patients.1,2 However, clinical experience has shown that these concentrates are not as effective in patients with inhibitors as factor VIII concentrates are in patients without inhibitors. The lack of efficacy has resulted in escalation of dose and frequency of administration by physicians, particularly when using the currently available PCC.


Author(s):  
Matteo Nicola Dario Di Minno ◽  
Alessandro Di Minno ◽  
Ilenia Calcaterra ◽  
Ernesto Cimino ◽  
Francesco Dell'Aquila ◽  
...  

1975 ◽  
Author(s):  
R. Pflugshaupt ◽  
S. Moser ◽  
K. Züger ◽  
R. Bütler

Six one stage methods and one two stage method were tested for precision and reproducibility. With each method twenty calibration curves of normal plasma and two lots of Factor VIII concentrates were established. Statistical evaluation revealed only minor differences. Neither one of the methods was optimal for both the physiological-pathological region and the region of high activity preparations.Three selected methods were tested in vivo for accuracy: nine patients with hemophilia A were treated with equal amounts of Factor VIII concentrates or kryoprecipitates respectively. The methods showed different activities for preparations as well as for patient’s plasma. The discrepancy between measured and expected recovery differed for each method.


Blood ◽  
1990 ◽  
Vol 75 (2) ◽  
pp. 378-383 ◽  
Author(s):  
IM Nilsson ◽  
E Berntorp ◽  
O Zettervall ◽  
B Dahlback

Abstract We recently described tolerance induction with factor VIII/IX, cyclophosphamide, and high-dose intravenous IgG in hemophilia A or B patients with coagulation inhibitory antibodies. Circulating noninhibitory antibodies complexed with factor IX have been demonstrated in tolerant hemophilia B patients. Similar findings are now described in six tolerant hemophilia A patients. Complexes between factor VIII and the ‘tolerant’ antibody were demonstrated by subjecting plasma to gel filtration chromatography, void fractions containing factor VIII/vWF complexes being collected and adsorbed to protein A. Using 125I-labeled F(ab')2 fragments against IgG subclass and factor VIII antigen, complexes between an IgG4 antibody and factor VIII were found to adsorb to protein A. After infusion of factor VIII to tolerant patients, all factor VIII circulated in complex with IgG4 antibody. In three of the patients, the ‘tolerant’ antibodies inhibited an ELISA specific for factor VIII light chain but, unlike the pretolerant antibodies, did not bind radiolabeled factor VIII heavy chain. Although after induction of tolerance the patients still have circulating IgG4 antibodies against factor VIII, the antibodies differ in specificity, lack coagulation inhibitory activity, and do not enhance the rate of elimination of factor VIII.


Sign in / Sign up

Export Citation Format

Share Document