Acyl-Enzymes As Fibrinolytic Agents

1981 ◽  
Author(s):  
R A G Smith

Plasminogen activators or plasmins specifically and reversibly acylated at the active centre have been used as delivery systems for fibrinolytic agents in vivo. Potential advantages of this approach, including enhanced efficacy, reduced toxicity and better control of lysis are discussed. General chemical methods for specific acylation of these enzymes are given and structure-activity relationships for deacylation outlined. Evidence for the activity of acyl-plasmins in vitro and the evasion of plasma antiplasmins by these derivatives is presented. Kinetic schemes for fibrinolysis by acyl-enzymes in vivo and the use of these models for prediction of optimal deacylation rate constants for each class of agent are briefly discussed.

1977 ◽  
Vol 37 (01) ◽  
pp. 154-161 ◽  
Author(s):  
B. A Janik ◽  
S. E Papaioannou

SummaryUrokinase, streptokinase, Brinase, trypsin, and SN 687, a bacterial exoprotease, have been evaluated in an ex vivo assay system. These enzymes were injected into rabbits and the fibrinolytic activity as well as other coagulation parameters were measured by in vitro techniques. Dose-response correlations have been made using the euglobulin lysis time as a measure of fibrinolytic activity and the 50% effective dose has been determined for each enzyme. Loading doses, equal to four times the 50% effective dose, were administered to monitor potential toxicity revealing that Brinase, trypsin, and SN 687 were very toxic at this concentration.Having established the 50% effective dose for each enzyme, further testing was conducted where relevant fibrinolytic and coagulation parameters were measured for up to two days following a 50% effective dose bolus injection of each enzyme. Our results have demonstrated that urokinase and streptokinase are plasminogen activators specifically activating the rabbit fibrinolytic system while Brinase, trypsin and SN 687 increase the general proteolytic activity in vivo.The advantages of this ex vivo assay system for evaluating relative fibrinolytic potencies and side effects for plasminogen activators and fibrinolytic proteases have been discussed.


2020 ◽  
Vol 27 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Bogdan Bumbăcilă ◽  
Mihai V. Putz

Pesticides are used today on a planetary-wide scale. The rising need for substances with this biological activity due to an increasing consumption of agricultural and animal products and to the development of urban areas makes the chemical industry to constantly investigate new molecules or to improve the physicochemical characteristics, increase the biological activities and improve the toxicity profiles of the already known ones. Molecular databases are increasingly accessible for in vitro and in vivo bioavailability studies. In this context, structure-activity studies, by their in silico - in cerebro methods, are used to precede in vitro and in vivo studies in plants and experimental animals because they can indicate trends by statistical methods or biological activity models expressed as mathematical equations or graphical correlations, so a direction of study can be developed or another can be abandoned, saving financial resources, time and laboratory animals. Following this line of research the present paper reviews the Structure-Activity Relationship (SAR) studies and proposes a correlation between a topological connectivity index and the biological activity or toxicity made as a result of a study performed on 11 molecules of organophosphate compounds, randomly chosen, with a basic structure including a Phosphorus atom double bounded to an Oxygen atom or to a Sulfur one and having three other simple covalent bonds with two alkoxy (-methoxy or -ethoxy) groups and to another functional group different from the alkoxy groups. The molecules were packed on a cubic structure consisting of three adjacent cubes, respecting a principle of topological efficiency, that of occupying a minimal space in that cubic structure, a method that was called the Clef Method. The central topological index selected for correlation was the Wiener index, since it was possible this way to discuss different adjacencies between the nodes in the graphs corresponding to the organophosphate compounds molecules packed on the cubic structure; accordingly, "three dimensional" variants of these connectivity indices could be considered and further used for studying the qualitative-quantitative relationships for the specific molecule-enzyme interaction complexes, including correlation between the Wiener weights (nodal specific contributions to the total Wiener index of the molecular graph) and the biochemical reactivity of some of the atoms. Finally, when passing from SAR to Q(uantitative)-SAR studies, especially by the present advanced method of the cubic molecule (Clef Method) and its good assessment of the (neuro)toxicity of the studied molecules and of their inhibitory effect on the target enzyme - acetylcholinesterase, it can be seen that a predictability of the toxicity and activity of different analogue compounds can be ensured, facilitating the in vivo experiments or improving the usage of pesticides.


2016 ◽  
pp. 2663 ◽  
Author(s):  
Qianqian Liang ◽  
Li Zhang ◽  
Tengteng Wang ◽  
Qiang Li ◽  
Jing Huang ◽  
...  

2015 ◽  
Vol 12 (110) ◽  
pp. 20150589 ◽  
Author(s):  
Maria C. Z. Meneghetti ◽  
Ashley J. Hughes ◽  
Timothy R. Rudd ◽  
Helena B. Nader ◽  
Andrew K. Powell ◽  
...  

Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro , ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed.


2019 ◽  
Vol 47 (21) ◽  
pp. 11284-11303 ◽  
Author(s):  
Joseph Ochaba ◽  
Andrew F Powers ◽  
Kaitlyn A Tremble ◽  
Sarah Greenlee ◽  
Noah M Post ◽  
...  

Abstract Endocytosis is a mechanism by which cells sense their environment and internalize various nutrients, growth factors and signaling molecules. This process initiates at the plasma membrane, converges with autophagy, and terminates at the lysosome. It is well-established that cellular uptake of antisense oligonucleotides (ASOs) proceeds through the endocytic pathway; however, only a small fraction escapes endosomal trafficking while the majority are rendered inactive in the lysosome. Since these pathways converge and share common molecular machinery, it is unclear if autophagy-related trafficking participates in ASO uptake or whether modulation of autophagy affects ASO activity and localization. To address these questions, we investigated the effects of autophagy modulation on ASO activity in cells and mice. We found that enhancing autophagy through small-molecule mTOR inhibition, serum-starvation/fasting, and ketogenic diet, increased ASO-mediated target reduction in vitro and in vivo. Additionally, autophagy activation enhanced the localization of ASOs into autophagosomes without altering intracellular concentrations or trafficking to other compartments. These results support a novel role for autophagy and the autophagosome as a previously unidentified compartment that participates in and contributes to enhanced ASO activity. Further, we demonstrate non-chemical methods to enhance autophagy and subsequent ASO activity using translatable approaches such as fasting or ketogenic diet.


2009 ◽  
Vol 76 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Ester Gutiérrez-Pascual ◽  
Jérôme Leprince ◽  
Antonio J. Martínez-Fuentes ◽  
Isabelle Ségalas-Milazzo ◽  
Rafael Pineda ◽  
...  

2019 ◽  
Vol 4 (7) ◽  
Author(s):  
Samuel Egieyeh ◽  
Sarel F. Malan ◽  
Alan Christoffels

Abstract A large number of natural products, especially those used in ethnomedicine of malaria, have shown varying in vitro antiplasmodial activities. Facilitating antimalarial drug development from this wealth of natural products is an imperative and laudable mission to pursue. However, limited manpower, high research cost coupled with high failure rate during preclinical and clinical studies might militate against the pursuit of this mission. These limitations may be overcome with cheminformatic techniques. Cheminformatics involves the organization, integration, curation, standardization, simulation, mining and transformation of pharmacology data (compounds and bioactivity) into knowledge that can drive rational and viable drug development decisions. This chapter will review the application of cheminformatics techniques (including molecular diversity analysis, quantitative-structure activity/property relationships and Machine learning) to natural products with in vitro and in vivo antiplasmodial activities in order to facilitate their development into antimalarial drug candidates and design of new potential antimalarial compounds.


Sign in / Sign up

Export Citation Format

Share Document