Thrombolytic Activity of Two Chimeric Recombinant Plasminogen Activators (FK2tu-PA and K2tu-PA) in Rabbits

1992 ◽  
Vol 68 (03) ◽  
pp. 331-335 ◽  
Author(s):  
Giancarlo Agnelli ◽  
Claudia Pascucci ◽  
Mario Colucci ◽  
Giuseppe G Nenci ◽  
Antonio Mele ◽  
...  

SummaryThe aim of this study was to evaluate the thrombolytic activity of two hybrid plasminogen activators (HPAs) in a rabbit jugular vein thrombosis model. In the two HPAs the kringle-2 domain (K2tu-PA) or the finger and the kringle-2 domains (FK2tu-PA) of tissue-type plasminogen activator (t-PA) are linked to the catalytic protease domain of single chain urokinase type plasminogen activator (scu-PA). The two HPAs were compared with rt-PA and scu-PA on a weight/weight basis. K2tu-PA, FK2tu-PA, rt-PA and scu-PA were infused at doses of 0.4, 0.8 and 1.2 mg/kg over 3 h. Saline served as control. Saline produced 11 ± 2% thrombolysis. The three doses of K2tu-PA led to 38 ± 4%, 66 ± 5% and 89 ± 7% thrombolysis, respectively; the three doses of FK2tu-PA: 18 ± 3%, 29 ± 5% and 33 ± 6%, respectively; the three doses of rt-PA 32 ± 2%, 49 ± 3% and 68 ± 6%, respectively; the three doses of scu-PA 16 ± 2%, 24 ± 3% and 32 ± 4%, respectively. K2tu-PA and rt-PA showed a statistically significant higher thrombolytic activity than FK2tu-PA and scu-PA at the three tested doses (p <0.01). The thrombolytic activity of K2tu-PA was significantly higher than rt-PA at the two higher doses (p <0.01). Both K2tu-PA and rt-PA produced a statistically significant reduction of fibrinogen, α2-antiplasmin and plasminogen 3 h after the start of the infusions of the two higher doses. No statistically significant differences between K2tu-Pa and rt-PA were observed. Concomitant with the lower thrombolytic activity, the systemic proteolytic effects of FK2tu-PA and scu-PA were less pronounced. We conclude that the two HPAs we tested are effective thrombolytic agents. K2tu-PA deserves particular attention in future experiments.

1993 ◽  
Vol 69 (05) ◽  
pp. 466-472 ◽  
Author(s):  
M Colucci ◽  
L G Cavallo ◽  
G Agnelli ◽  
A Mele ◽  
R Bürgi ◽  
...  

SummaryTwo hybrid plasminogen activators (K2tu-PA and FK2tu-PA), linking the kringle 2 domain or the finger plus the kringle 2 domains of tissue-type plasminogen activator (t-PA) to the catalytic domain of single-chain urokinase-type plasminogen activator (scu-PA) were studied. At variance with similar constructs previously reported, they were obtained by fusion of the t-PA and scu-PA derived portions at their plasmin cleavage site (between Arg275 of t-PA and Ile159 of scu-PA), thus eliminating from scu-PA the two peptide bonds (Glu143-Leu144 and Arg156-Phe157) that lead to low molecular weight scu-PA and to thrombin-inactivated tcu-PA. The specific activities of K2tu-PA and FK2tu-PA, as measured by fibrin plate were 2.5 × 106 and 1.0 × 106 t-PA equivalent units/mg, respectively. Activation of plasminogen by hybrid PAs was stimulated by both CNBr-digested fibrinogen (40- and 80-fold) and Des-A-fibrin monomers (6- and 12-fold). The relatively weak stimulation of chimeric PAs by minimally degraded fibrin monomers was consistent with their reduced fibrin binding capacity. Like scu-PA, the chimeric PAs, in the single-chain form, were insensitive to inhibition, as they retained full activity after prolonged incubation in plasma and did not interact with SDS-reactivated recombinant PAI-1. The concentration producing 50% lysis of blood clots in 3 h was 0.5 μg/ml for K2tu-PA and 1 μg/ml for FK2tu-PA, as compared to 0.5 μg/ml and >2 μg/ml for t-PA and scu-PA, respectively. Plasminogen and α2-antiplasmin consumption induced by the hybrid PAs in clot-free plasma was comparable to (K2tu-PA) or lower than (FK2tu-PA) that induced by either t-PA or scu-PA. When exposed to plasmin, the hybrids were completely converted into two-chain molecules with full enzymatic activity. At variance with u-PA, however, the two-chain recombinant activators still required fibrin for full expression of activity. These data indicate that the products of such “artificial” fusion behave like true chimeras without loss of biological activity. The insensitivity to thrombin inactivation and to the proteolytic cleavage leading to low molecular weight scu-PA might confer enhanced stability to the molecules, especially at thrombus level. Moreover, if the thrombolytic activity observed in vitro is maintained in vivo, the prolonged half life of these hybrids should result in higher plasma levels of activator and thus in more extensive and rapid lysis.


1995 ◽  
Vol 73 (03) ◽  
pp. 488-494 ◽  
Author(s):  
J L M Heeremans ◽  
R Prevost ◽  
M E A Bekkers ◽  
P Los ◽  
J J Emeis ◽  
...  

SummaryIn this study, we aimed at improving the therapeutic index of tissue- type Plasminogen Activator (t-PA) as thrombolytic agent in the treatment of myocardial infarction. Liposome-encapsulated t-PA was tested in a rabbit jugular vein thrombosis model: administration of free t-PA (t-PA) as a bolus injection in the ear vein was compared to a similar administration of liposomal t-PA (t-PA-lip), liposomal t-PA in plasminogen-coated liposomes (Plg-t-PA-lip), a mixture of free t-PA and empty liposomes (t-PA+empty lip) and a saline-blank (blank) in terms of thrombolytic activity and side effects.Liposomal t-PA (t-PA-lip/Plg-t-PA-lip) showed a significantly better thrombolysis efficiency than equimolar doses of free t-PA (t-PA/ t-PA+ empty lip): about 0.24 mg/kg of liposomal t-PA practically equalled the lysis-activity of a dose of free t-PA of 1.0 mg/kg (t-PAlmg/kg). On the other hand, liposome encapsulation did not affect the systemic activation of alpha2-antiplasmin and plasminogen by t-PA.We conclude that for this model an improvement in thrombolytic efficacy of t-PA is achieved by liposome encapsulation of t-PA. As t-PA-lip and Plg-t-PA-lip -treatment induced similar results, targeting of liposomal t-PA by coupled glu-Plg remains a topic to be optimized in future studies.


1988 ◽  
Vol 60 (02) ◽  
pp. 247-250 ◽  
Author(s):  
H R Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
F De Cock ◽  
D Collen

SummaryRecombinant chimaeric molecules between tissue-type plasminogen activator (t-PA) and single chain urokinase-type plasminogen activator (scu-PA) or two chain urokinase-type plasminogen activator (tcu-PA) have intact enzymatic properties of scu-PA or tcu-PA towards natural and synthetic substrates (Nelles et al., J Biol Chem 1987; 262: 10855-10862). In the present study, we have compared the reactivity with inhibitors of both the single chain and two chain variants of recombinant u-PA and two recombinant chimaeric molecules between t-PA and scu-PA (t-PA/u-PA-s: amino acids 1-263 of t-PA and 144-411 of u-PA; t-PA/u-PA-e: amino acids 1-274 of t-PA and 138-411 of u-PA). Incubation with human plasma in the absence of a fibrin clot for 3 h at 37° C at equipotent concentrations (50% clot lysis in 2 h), resulted in significant fibrinogen breakdown (to about 40% of the normal value) for all two chain molecules, but not for their single chain counterparts. Preincubation of the plasminogen activators with plasma for 3 h at 37° C, resulted in complete inhibition of the fibrinolytic potency of the two chain molecules but did not alter the potency of the single chain molecules. Inhibition of the two chain molecules occurred with a t½ of approximately 45 min. The two chain variants were inhibited by the synthetic urokinase inhibitor Glu-Gly-Arg-CH2CCl with apparent second-order rate constants of 8,000-10,000 M−1s−1, by purified α2-antiplasmin with second-order rate constants of about 300 M−1s−1, and by plasminogen activator inhibitor-1 (PAI-1) with second-order rate constants of approximately 2 × 107 M−1s−1.It is concluded that the reactivity of single chain and two chain forms of t-PA/u-PA chimaers with inhibitors is very similar to that of the single and two chain forms of intact u-PA.


1993 ◽  
Vol 70 (05) ◽  
pp. 867-872 ◽  
Author(s):  
Dingeman C Rijken ◽  
Gerard A W de Munk ◽  
Annie F H Jie

SummaryIn order to define the possible effects of heparin on the fibrinolytic system under physiological conditions, we studied the interactions of this drug with plasminogen and its activators at various ionic strengths. As reported in recent literature, heparin stimulated the activation of Lys-plasminogen by high molecular weight (HMW) and low molecular weight (LMW) two-chain urokinase-type plasminogen activator (u-PA) and two-chain tissue-type plasminogen activator (t-PA) 10- to 17-fold. Our results showed, however, that this stimulation only occurred at low ionic strength and was negligible at a physiological salt concentration. Direct binding studies were performed using heparin-agarose column chromatography. The interaction between heparin and Lys-plasminogen appeared to be salt sensitive, which explains at least in part why heparin did not stimulate plasminogen activation at 0.15 M NaCl. The binding of u-PA and t-PA to heparinagarose was less salt sensitive. Results were consistent with heparin binding sites on both LMW u-PA and the amino-terminal part of HMW u-PA. Single-chain t-PA bound more avidly than two-chain t-PA. The interactions between heparin and plasminogen activators can occur under physiological conditions and may modulate the fibrinolytic system.


1987 ◽  
Author(s):  
L Piérard ◽  
P Jacobs ◽  
D Gheysen ◽  
M Hoylaerts ◽  
A Cravador ◽  
...  

In order to produce plasminogen activators (PA) more specific and more active than their natural counterparts, we designed recombinant genes encoding mutant forms of urokinase (u-PA) and chimaeric molecules combining fragments of tissue type plasminogen activator (t-PA) and of u-PA. The following constructs have been realized : 1°) u-PA where amino acids Arg156 and Lys158 have been replaced by Thr. The purpose of this approach was to obtain a prourokinase molecule displaying similar properties as the natural single chain urokinase (scu-PA) but resistant to the cleavage by plasmin ; 2°) u-PA where the second cleavage site, Lys135-Lys136, was also eliminated either by replacing amino acid 132 to amino acid 147 by a shorter link (Ser-Thr) as found in t-PA, or by replacing the two lysines by glutamine residues. The resulting molecules correspond thus to completely uncleavable scu-PA forms ; 3°) an hybrid composed of the finger domain of t-PA and of the B-chain of u-PA ; 4°) an hybrid made of the A-chain of t-PA and of the B-chain of u-PA ; 5°) an hybrid where the kringle 2 of t-PA has been inserted between the kringle domain and the B-chain of u-PA. The last three constructs have been made to confer the fibrin binding specificity of t-PA to the B-chain of u-PA.All recombinant DNAs were introduced, via an expression vector, into R1610 and CosI cells. Secretion of the recombinant products was monitored by ELISA and activities were assayed in an immobilized system involving a monoclonal antibody (AAU2) raised against 33K u-PA, plasminogen and the specific chromogenic substrate S2251. In this assay, all recombinant products, except the plasmin resistant (156-158) scu-PA, showed apparent specific activities comparable to the activity of natural two-chain u-PA. Potential interest of these new plasminogen activators in therapy will be discussed and further characterization of the new molecules will-be presented.


Blood ◽  
1989 ◽  
Vol 73 (5) ◽  
pp. 1207-1212
Author(s):  
DJ Spriggs ◽  
JM Stassen ◽  
Y Hashimoto ◽  
D Collen

Thrombolysis with single and combined four-hour intravenous (IV) infusions of recombinant tissue-type plasminogen activator (rt-PA), recombinant single-chain urokinase-type plasminogen activator of 54,000 molecular weight (mol wt) (rscu-PA), and rscu-PA-32 kD, an rscu-PA derivative of 32,000 mol wt was studied in a femoral vein thrombosis model in the dog and in a jugular vein thrombosis model in the rabbit. In both species, the dose-response curves were linear, and no systemic activation of the fibrinolytic system or fibrinogen breakdown was observed. The steady-state levels of rt-PA-, rscu-PA-, and rscu-PA-32 kD-related antigens in plasma were proportional to the infusion rates. In the dog model, 25% lysis was obtained with 0.11 mg/kg rt-PA, 0.8 mg/kg rscu-PA, and 0.37 mg/kg rscu-PA-32 kD. Combinations of rt-PA and rscu-PA were 2.6 times more active (P less than .005) than anticipated on the basis of their pharmacologic additive effects, whereas combinations of rt-PA and rscu-PA-32 kD were 2.7 times more active (P less than .05). In the rabbit model, 25% lysis was obtained with 0.24 mg/kg rt-PA, 0.75 mg/kg rscu-PA, and 1.25 mg/kg rscu-PA-32 kD. Combinations of rt-PA and rscu-PA have a fivefold synergistic interaction, but surprisingly no synergism was observed between rt-PA and rscu-PA-32 kD. This study shows that synergism between rt-PA and rscu-PA occurs both in rabbits and dogs in a relatively narrow concentration range that allows a fractional reduction of the total equipotent dose by a factor of 2.5-fold to fivefold. Combination therapy is not associated with systemic fibrinolytic activation. This range of synergistic interaction, although limited, may be useful in devising the best thrombolytic therapy for patients with thromboembolic disease.


Blood ◽  
1989 ◽  
Vol 73 (4) ◽  
pp. 994-999
Author(s):  
J Hauert ◽  
G Nicoloso ◽  
WD Schleuning ◽  
F Bachmann ◽  
M Schapira

To elucidate the mechanism by which activation of the contact system of blood coagulation leads to expression of fibrinolytic activity, we have determined the molecular characteristics of the plasminogen activators present in dextran sulfate-treated euglobulin fractions by electrophoretic-zymographic analysis and specific immunoadsorption. In addition to free and protease inhibitor-bound tissue-type plasminogen activator (t-PA), dextran sulfate precipitates of euglobulins contained the complex formed between plasma kallikrein and C1-inhibitor, an indicator of prekallikrein activation. These precipitates also contained substantial fibrinolytic activity related to urinary-type plasminogen activator (u-PA). Autoradiographic analysis was then used to evaluate the cleavage of 125I-single-chain u-PA (prourokinase) in dextran sulfate euglobulins as well as after exposure to kallikrein or beta-factor XIIa. This analysis supported the conclusion that plasma kallikrein-mediated cleavage and activation of single-chain u-PA is the mechanism operative for the development of lytic activity in euglobulin precipitates following activation of the contact system.


Blood ◽  
1988 ◽  
Vol 71 (1) ◽  
pp. 216-219
Author(s):  
D Collen ◽  
JM Stassen ◽  
G Larsen

The following mutants of human tissue-type plasminogen activator (t-PA) were constructed by deletion mutagenesis of t-PA cDNA, expressed in Chinese hamster ovary cells and purified to homogeneity: (a) t-PA-delta FE:t-PA lacking both the fibronectin fingerlike (F) domain and the epidermal growth factor (E) domain, (b) t-PA-delta FE1X:t-PA-delta FE with the glycosylated 117Asn mutagenized to Gln, and (c) t-PA-delta FE3X:t-PA-delta FE with the three known glycosylated Asn residues replaced by Gln. The mutant and natural t-PA (Mel-t-PA obtained from melanoma cell culture) were infused intravenously for four hours into rabbits with jugular vein thrombosis at doses ranging between 0.12 and 0.75 mg/kg. Fifty percent thrombolysis, determined by interpolation, was obtained with 0.4 mg/kg Mel-t-PA, 0.37 mg/kg t-PA-delta FE, 0.2 mg/kg t-PA-delta FE1X, and 0.40 mg/kg t-PA-delta FE3X. These infusion rates resulted in plateau levels of t-PA antigen in plasma of 0.055, 2.1, 0.6, and 0.5 micrograms/mL, respectively. At 50% lysis, the residual fibrinogen 30 minutes after the end of the infusion was 100%, 81%, 100% and 85% of baseline, and the residual alpha 2-antiplasmin was 82%, 55%, 85%, and 90%, respectively. These results indicate that t-PA- delta FE1X and t-PA-delta FE3X have a specific thrombolytic activity and fibrin specificity comparable to that of Mel-t-PA. t-PA-delta FE has a comparable specific thrombolytic activity but a lower fibrin specificity than Mel-t-PA. After the end of the infusion, t-PA-related antigen disappeared from plasma with an initial t1/2 of four minutes for Mel-t-PA, 25 minutes for t-PA-delta FE, 42 minutes for t-PA-delta FE1X, and 14 minutes for t-PA-delta FE3X. It is concluded that t-PA can be modified by deletion mutagenesis to yield variants with a markedly longer half-life in the blood. Some of these variants have a specific thrombolytic activity and fibrin specificity similar to that of natural t-PA. These variants may be useful to identify the structures in t-PA responsible for its clearance, specific thrombolytic activity, and fibrin specificity in vivo.


1987 ◽  
Vol 58 (03) ◽  
pp. 943-946 ◽  
Author(s):  
D Collen ◽  
J M Stassen ◽  
F De Cock

SummaryIn a quantitative model of thrombolysis, consisting of rabbits with a 125T-fibrin labeled blood clot in the jugular vein, simultaneous intravenous infusion over 4 hours of t-PA and scu-PA or of t-PA and urokinase had a significantly greater (p <0.01) thrombolytic effect than could be anticipated on the basis of the added effects of each agent alone. In order to further investigate the mechanism of this in vivo synergism, recombinant t-PA (rt-PA) and scu-PA in synergistic amounts were infused: 1) simultaneously over 4 hours, 2) rt-PA over 1 hour, then 15 min later scu-PA over 2 hours and 3) scu-PA over 1 hour, then 15 min later rt-PA over 2 hours. Simultaneous infusion of 0.1 mg/kg rt-PA and 0.2 mg/kg scu-PA gave 48°2 percent thrombolysis (mean ° SEM, n = 5) and of 0.2 mg/kg rt-PA and 0.4 mg/kg scu-PA 67°5 percent (n = 5). When these infusions were given sequentially, rt-PA followed by scu-PA gave 32 °5 (n = 4) and 49 °8 (n = 4) percent lysis, but scu-PA followed by rt-PA yielded only 14° 1 (n = 4) and 21 ° 1 (n = 4) percent lysis, indicating that synergism occurs when rt-PA is followed by scu-PA but not when scu-PA is followed by rt-PA. In order to investigate the hypothesis that rt-PA predigests the clot resulting in more efficient plasminogen activation by scu-PA at the clot surface, partial thrombolysis was induced by injection of urokinase. Subsequent infusion of 0.4 mg/ kg of scu-PA did however not result in more thrombolysis than expected for additive effects. Infusion of 0.5 mg/kg of urokinase followed by 0.1 mg/kg rt-PA was not synergistic (24 °3 percent lysis, n = 3) whereas lysis by rt-PA followed by urokinase was 34°3 percent (p <0.1, n = 3).Sequential therapy with rt-PA followed by scu-PA might constitute an alternative to simultaneous infusion of synergistic thrombolytic agents.


Sign in / Sign up

Export Citation Format

Share Document