Recent Progress in Radical Decarboxylative Functionalizations Enabled by Transition-Metal (Ni, Cu, Fe, Co or Cr) Catalysis

Synthesis ◽  
2020 ◽  
Vol 53 (01) ◽  
pp. 1-29
Author(s):  
Yahu A Liu ◽  
Xuebin Liao ◽  
Hui Chen

AbstractAliphatic carboxylic acids are abundant in natural and synthetic sources and are widely used as connection points in many chemical transformations. Radical decarboxylative functionalization promoted by transition-metal catalysis has achieved great success, enabling carboxylic acids to be easily transformed into a wide variety of products. Herein, we highlight the recent advances made on transition-metal (Ni, Cu, Fe, Co or Cr) catalyzed C–X (X = C, N, H, O, B, or Si) bond formation as well as syntheses of ketones, amino acids, alcohols, ethers and difluoromethyl derivatives via radical decarboxylation of carboxylic acids or their derivatives, including, among others, redox-active esters (RAEs), anhydrides, and diacyl peroxides.1 Introduction2 Ni-Catalyzed Decarboxylative Functionalizations3 Cu-Catalyzed Decarboxylative Functionalizations4 Fe-Catalyzed Decarboxylative Functionalizations5 Co- and Cr-Catalyzed Decarboxylative Functionalizations6 Conclusions

2019 ◽  
Vol 377 (6) ◽  
Author(s):  
Samson Afewerki ◽  
Armando Córdova

AbstractThe concept of merging enamine activation catalysis with transition metal catalysis is an important strategy, which allows for selective chemical transformations not accessible without this combination. The amine catalyst activates the carbonyl compounds through the formation of a reactive nucleophilic enamine intermediate and, in parallel, the transition metal activates a wide range of functionalities such as allylic substrates through the formation of reactive electrophilic π-allyl-metal complex. Since the first report of this strategy in 2006, considerable effort has been devoted to the successful advancement of this technology. In this chapter, these findings are highlighted and discussed.


2021 ◽  
Author(s):  
Han Liu ◽  
Jin-Tao Yu ◽  
Changduo Pan

Diacyl peroxides, which can be easily synthesized from corresponding carboxylic acids, are commonly utilized as radical initiators and one electron oxidants. Under thermal, transition-metal catalysis or irradiation conditions the cleavage...


Synthesis ◽  
2017 ◽  
Vol 49 (24) ◽  
pp. 5263-5284 ◽  
Author(s):  
Hongli Bao ◽  
Yajun Li ◽  
Liang Ge ◽  
Munira Muhammad

Radical decarboxylation has emerged as an attractive method for the formation of C–C bonds starting from easily accessible carboxylic acids. In this review, we attempt to bring the readers up to date in this rapidly expanding field. Specifically, we will cover recent advances in Csp3–C bond formation via the radical decarboxylation of aliphatic carboxylic acids and their activated forms, such as N-hydroxyphthalimide esters (NHP esters), alkyl diacyl peroxides, alkyl peresters, and aryliodine(III) dicarboxylates. The scope and limitation of these transformations will be discussed, highlighting gaps in knowledge and research and examining the mechanisms underlying radical decarboxylation. We aim to make this review a stepping stone for further development in this field.1 Introduction2 Aliphatic Carboxylic Acids3 N-Hydroxyphthalimide Esters (NHP Esters)4 Alkyl Diacyl Peroxides5 Alkyl Peresters6 Aryliodine(III) Dicarboxylates7 Conclusion


Synlett ◽  
2020 ◽  
Vol 31 (19) ◽  
pp. 1857-1861
Author(s):  
Hua Zhang ◽  
Li Wang

In recent decades, C–H borylation has undergone rapid development and has become one of the most important and efficient methods for the synthesis of organoboron compounds. Although transition-metal catalysis dominates C–H borylation, the metal-free approach has emerged as a promising alternative strategy. This article briefly summarizes the history of metal-free aromatic C–H borylation, including early reports on electrophilic C–H borylation and recent progress in metal-free catalytic intermolecular C–H borylation; it also highlights our recent work on BF3·Et2O-catalyzed C2–H borylation of hetarenes. Despite these recent advances, comprehensive mechanistic studies on various metal-free catalytic aromatic C–H borylations and novel processes with a wider substrate scope are eagerly expected in the near future.


2015 ◽  
Vol 2 (7) ◽  
pp. 849-858 ◽  
Author(s):  
Zhong-Yan Cao ◽  
Jian Zhou

Recent progress in catalytic asymmetric synthesis of spirocyclopropyl oxindoles via organocatalysis and transition metal catalysis are summarized and discussed.


Synlett ◽  
2017 ◽  
Vol 28 (15) ◽  
pp. 1885-1890 ◽  
Author(s):  
Lukas Gooßen ◽  
Agostino Biafora

The widely available carboxylate groups have recently emerged as advantageous leaving groups for regioselective ipso substitutions and directing groups for ortho-C–H functionalizations in transition-metal catalysis. In the latter reactions, they can subsequently be transformed into a wealth of functionalities through decarboxylative ipso substitutions, or tracelessly removed through protodecarboxylation. The latest development in this field are reactions in which carboxylic acids function as deciduous directing groups, unlocking their unique potential for achieving regioselective monofunctionalization of a single ortho-C–H position. A deciduous directing group stays in place just long enough to direct an incoming reagent into a specific position and is then shed tracelessly as soon as the new C–C or C–heteroatom bond has formed. This inherently prevents unwanted double functionalization. This account discusses characteristics and synthetic opportunities of reactions with carboxylates as deciduous directing groups.


Sign in / Sign up

Export Citation Format

Share Document