photoluminescent materials
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7723
Author(s):  
Krzysztof Wandachowicz ◽  
Małgorzata Zalesińska ◽  
Przemysław Otomański

Photoluminescent strips forming a Low Location Lighting (LLL) system are the primary method for marking escape routes on passenger ships. The LLL system can be built as a self-luminous system (powered by electricity) or made as a series of strips made of photoluminescent materials, which glow and indicate the escape route after the loss of basic and emergency lighting. To ensure correct visual guidance, these strips must be installed at specific locations in the passageways and achieve appropriate photometric parameters after a certain time from their activation. The properties of the LLL system depend on the type of luminescent material used, the excitation source, and the exposure parameters. This paper presents the results of laboratory tests on two types of photoluminescent materials used for the construction of LLL systems. We recorded the change in luminance after the loss of excitation and measured the luminance values obtained 10 and 60 min after the loss of excitation under exposure to light sources commonly used for interior lighting on passenger ships. It turns out that replacing fluorescent lamps with LED lamps can reduce the luminance of the LLL system.


Author(s):  
Orhan Kıbrıslı ◽  
Erdinc Erol ◽  
Ali Erçin Ersundu ◽  
Miray Çelikbilek Ersundu

Abstract CdSe and CsPbBr3 quantum dots are well studied photoluminescent materials due to their extraordinary emission properties. However, their vulnerability against environmental conditions limits their integration into further applications. At this point, glass encapsulation offers promising durability features due to its robust and dense structure. In this study, CdSe and CsPbBr3 QDs are successfully synthesized in the same glass host through melt-quenching technique followed by a single heat-treatment process. Excitation wavelength dependent photoluminescence properties are investigated and emission color tunability of monolithic glasses from yellow-green to red is demonstrated. Favorable quantum yield values are obtained as 21.78% and 16.63% under 345 and 365 nm excitation wavelengths, respectively. Prepared glasses demonstrate high potential to be used as tunable wavelength convertors for state-of-the-art photonic and opto-electronic applications.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012178
Author(s):  
C Chiatti ◽  
C Fabiani ◽  
A L Pisello

Abstract In the last decades, fossil fuels have become the primary resource for electricity generation, contributing to the aggravation of problems like global warming and ozone depletion. For this reason, innovative solutions are being continuously developed in order to improve energy efficiency in the construction sector. Beyond heating and cooling, urban lighting plays a significant role on the final energy consumption of a city, including both indoors and outdoors. In this work, photoluminescent materials are investigated as possible light sources to be implemented in urban lighting systems, focusing on the free-cost and renewable luminous gain they provide after being exposed to a proper radiation. In particular, commercially available photoluminescent powders are evaluated by means of spectroradiometric techniques and using a specifically designed experimental setup. Measurements are repeated for different intensities and wavebands of irradiation to identify the most promising “pigment-lamp” combination in terms of (i) luminous intensity and (ii) photoluminescence duration. Results show that the shorter the distance between the emission spectra of the exciting source and the photoluminescent powder, the better the performance of the latter. Therefore, the choice of both afterglow and exciting source cannot be independent from the final system’s application and the required end-use lighting level.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samira Garshasbi ◽  
Shujuan Huang ◽  
Jan Valenta ◽  
Mat Santamouris

AbstractPhotoluminescent materials are advanced cutting-edge heat-rejecting materials capable of reemitting a part of the absorbed light through radiative/non-thermal recombination of excited electrons to their ground energy state. Photoluminescent materials have recently been developed and tested as advanced non-white heat-rejecting materials for urban heat mitigation application. Photoluminescent materials has shown promising cooling potential for urban heat mitigation application, but further developments should be made to achieve optimal photoluminescence cooling potential. In this paper, an advanced mathematical model is developed to explore the most efficient methods to enhance the photoluminescence cooling potential through estimation of contribution of non-radiative mechanisms. The non-radiative recombination mechanisms include: (1) Transmission loss and (2) Thermal losses including thermalization, quenching, and Stokes shift. The results on transmission and thermal loss mechanisms could be used for systems solely relying on photoluminescence cooling, while the thermal loss estimations can be helpful to minimize the non-radiative losses of both integrated photoluminescent-near infrared (NIR) reflective and stand-alone photoluminescent systems. As per our results, the transmission loss is higher than thermal loss in photoluminescent materials with an absorption edge wavelength (λAE) shorter than 794 nm and quantum yield (QY) of 50%. Our predictions show that thermalization loss overtakes quenching in photoluminescent materials with λAE longer than 834 nm and QY of 50%. The results also show that thermalization, quenching, and Stokes shift constitute around 56.8%, 35%, and 8.2% of the overall thermal loss. Results of this research can be used as a guide for the future research to enhance the photoluminescence cooling potential for urban heat mitigation application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna D. Stachowska ◽  
Andrew Murphy ◽  
Claire Mellor ◽  
Diogo Fernandes ◽  
Ella N. Gibbons ◽  
...  

AbstractIn this study we demonstrate simple guidelines to generate a diverse range of fluorescent materials in both liquid and solid state by focusing on the most popular C-dots precursors, i.e. the binary systems of citric acid and urea. The pyrolytic treatment of those precursors combined with standard size separation techniques (dialysis and filtration), leads to four distinct families of photoluminescent materials in which the emissive signal predominantly arises from C-dots with embedded fluorophores, cyanuric acid-rich C-dots, a blend of molecular fluorophores and a mixture of C-dots with unbound molecular fluorophores, respectively. Within each one of those families the chemical composition and the optical properties of their members can be fine-tuned by adjusting the molar ratio of the reactants. Apart from generating a variety of aqueous dispersions, our approach leads to highly fluorescent powders derived from precursors comprising excessive amounts of urea that is consumed for the build-up of the carbogenic cores, the molecular fluorophores and the solid diluent matrix that suppresses self-quenching effects.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Feng Zhou ◽  
Peiyang Gu ◽  
Zhipu Luo ◽  
Hari Krishna Bisoyi ◽  
Yujin Ji ◽  
...  

AbstractDeveloping organic photoluminescent materials with high emission efficiencies in the solid state under a water atmosphere is important for practical applications. Herein, we report the formation of both intra- and intermolecular hydrogen bonds in three tautomerizable Schiff-base molecules which comprise active hydrogen atoms that act as proton donors and acceptors, simultaneously hindering emission properties. The intercalation of water molecules into their crystal lattices leads to structural rearrangement and organic hydrate luminogen formation in the crystalline phase, triggering significantly enhanced fluorescence emission. By suppressing hydrogen atom shuttling between two nitrogen atoms in the benzimidazole ring, water molecules act as hydrogen bond donors to alter the electronic transition of the molecular keto form from nπ* to lower-energy ππ* in the excited state, leading to enhancing emission from the keto form. Furthermore, the keto-state emission can be enhanced using deuterium oxide (D2O) owing to isotope effects, providing a new opportunity for detecting and quantifying D2O.


2021 ◽  
pp. 100740
Author(s):  
Tianyu Liang ◽  
Jing Fu ◽  
Mengying Li ◽  
Haibo Li ◽  
Yuqi Hao ◽  
...  

2021 ◽  
Author(s):  
Antonios Kelarakis ◽  
Marta Krysmann ◽  
Joanna Stachowska ◽  
Andrew Murphy ◽  
Claire Mellor ◽  
...  

Abstract In this study we demonstrate simple guidelines to generate a diverse range of fluorescent materials in both liquid and solid state by focusing on the most popular C-dots precursors, i.e. the binary systems of citric acid and urea. The pyrolytic treatment of those precursors combined with standard size separation techniques (dialysis and filtration), leads to four distinct families of photoluminescent materials in which the emissive signal predominantly arises from C-dots with embedded fluorophores, cyanuric acid-rich C-dots, a blend of molecular fluorophores and a mixture of C-dots with unbound molecular fluorophores, respectively. Within each one of those families the chemical composition and the optical properties of their members can be fine-tuned by adjusting the molar ratio of the reactants. Apart from generating a variety of aqueous dispersions, our approach leads to highly fluorescent powders derived from precursors comprising excessive amounts of urea that is consumed for the build-up of the carbogenic cores, the molecular fluorophores and the solid diluent matrix that suppresses self-quenching effects.


Author(s):  
Xiaoxia Liu ◽  
Chengdong Peng ◽  
Lijie Zhang ◽  
Daying Guo ◽  
Yuexiao Pan

As an all-inorganic 0D lead-free metal halide, Cs2ZnCl4 is a potential excellent matrix to prepare chemical stable and environmentally friendly photoluminescent materials through ion doping strategy. So, it is necessary...


Sign in / Sign up

Export Citation Format

Share Document