Adoption of Robotic-Arm-Assisted Total Knee Arthroplasty Is Associated with Decreased Use of Articular Constraint and Manipulation under Anesthesia Compared to a Manual Approach

Author(s):  
Jenny Zhang ◽  
Chelsea N. Matzko ◽  
Andrew Sawires ◽  
Joseph O. Ehiorobo ◽  
Michael A. Mont ◽  
...  

AbstractHaptic robotic-arm-assisted total knee arthroplasty (RATKA) seeks to leverage three-dimensional planning, intraoperative assessment of ligament laxity, and guided bone preparation to establish and achieve patient-specific targets for implant position. We sought to compare (1) operative details, (2) knee alignment, (3) recovery of knee function, and (4) complications during adoption of this technique to our experience with manual TKA. We compared 120 RATKAs performed between December 2016 and July 2018 to 120 consecutive manual TKAs performed between May 2015 and January 2017. Operative details, lengths of stay (LOS), and discharge dispositions were collected. Tibiofemoral angles, Knee Society Scores (KSS), and ranges of motion were assessed until 3 months postoperatively. Manipulations under anesthesia, complications, and reoperations were tabulated. Mean operative times were 22 minutes longer in RATKA (p < 0.001) for this early cohort, but decreased by 27 minutes (p < 0.001) from the first 25 RATKA cases to the last 25 RATKA cases. Less articular constraint was used to achieve stability in RATKA (93 vs. 55% cruciate-retaining, p < 0.001; 3 vs. 35% posterior stabilized (PS), p < 0.001; and 4 vs. 10% varus-valgus constrained, p_ = _0.127). RATKA had lower LOS (2.7 vs. 3.4 days, p < 0.001). Discharge dispositions, tibiofemoral angles, KSS, and knee flexion angles did not differ, but manipulations were less common in RATKAs (4 vs. 17%, p = 0.013). We observed less use of constraint, shorter LOS, and fewer manipulations under anesthesia in RATKA, with no increase in complications. Operative times were longer, particularly early in the learning curve, but improved with experience. All measured patient-centered outcomes were equivalent or favored the newer technique, suggesting that RATKA with patient-specific alignment targets does not compromise initial quality. Observed differences may relate to improved ligament balance or diminished need for ligament release.

10.29007/h8xz ◽  
2019 ◽  
Author(s):  
Christina Cool ◽  
David Jacofsky ◽  
Kelly Seeger ◽  
Andréa Coppolecchia ◽  
Nipun Sodhi ◽  
...  

IntroductionOne way to potentially help contain the rising healthcare costs is the utilization of technological advances, such as robotic-assistive technology, for total knee arthroplasty (TKA). Therefore, the purpose of this study was to perform a cost analysis between robotic-arm assisted TKA and manual TKA (mTKA) techniques. Specifically, we compared: 1) 90-day EOC costs, as well as several variables within the episode, including 2) index costs; 3) index lengths-of-stay (LOS); 4) discharge disposition; and 5) readmission rates.MethodsA retrospective claims analysis was performed on Medicare FFS beneficiaries who underwent rTKA and mTKA procedures between January 1, 2016 and March 31, 2017. Patients were matched rTKA to mTKA in a 1-to-5 ratio, yielding 519 rTKAs and 2,595 mTKAs. The overall 90-day EOC costs, including the index procedures, LOS, discharge dispositions, and readmissions were compared between cohorts.ResultsOverall 90-day EOC costs ($18,568 vs. $20,960) as well as index facility costs ($12,384 vs. $13,024; p=0.0001) were found to be less than that for rTKA vs. mTKA. rTKA also accrued $1,744 fewer costs than mTKA (5,234 vs. $6,978; p=&lt;0.0001) utilized fewer days in inpatient (4 vs. 7; p&lt;0.0001) and SNF care (15 vs. 16; p=0.0642) as well as a 90-day readmission reduction of 33% (p=0.0423).DiscussionThe results from this study show rTKA to be associated with significantly lower 90-day EOC costs. These lower rTKA patient costs are likely attributable to the significantly lower index costs, increased likelihood of being discharged to home, shorter LOS, and decreased readmission rates, when compared to mTKA patient costs.


Author(s):  
Kevin B. Marchand ◽  
Hytham S. Salem ◽  
Kevin K. Mathew ◽  
Steven F. Harwin ◽  
Michael A. Mont ◽  
...  

AbstractAdvanced imaging used in robotic-assisted total knee arthroplasty (TKA), such as computed tomography (CT)-based three-dimensional (3D) planning, may provide an accurate means of implant sizing preoperatively. The purpose of this study was to examine preoperative CT-based implant planning accuracy for robotic-assisted TKA in patients who have (1) varus deformities, (2) valgus deformities, (3) neutral alignment, and (4) retained hardware. A total of 393 patients underwent a robotic-assisted TKA by a single surgeon received preoperative CT scans. The surgeon reviewed the CT-based model preoperatively and recorded the expected size of the components. The final implants used in each case were recorded and compared with the surgeon's preoperative plan. In all groups of patients, the surgeon's CT-based implant plan was within one size of the implant utilized 100% of the time for both the tibiae and femora. Overall, the surgeon was exactly matched in 319 (81%) and 315 (80%) cases for the femoral and tibial components, respectively. For the femoral component, the mean age for patients in whom the original plan was exactly matched was younger than those whose implants were upsized and older than patients those implants were downsized (p = 0.024). Other patient demographics and preoperative knee alignment were not associated with predictive accuracy for femoral or tibial components. Our results demonstrate how preoperative CT-based, 3D planning for robotic-assisted TKA is accurate to within one size of the components in every case (100%), and exactly matched in 80%. The results of this study are important because they demonstrate how CT-based preoperative implant planning for TKA is reliable and accurate across all native knee alignments and other patient-specific factors. In addition, they build on a previous study by the same single surgeon, demonstrating that predictive ability can improve over time. This may be important as we move toward more outpatient surgery with less ability for prostheses inventory at ambulatory sites.


Author(s):  
Leo Pauzenberger ◽  
Martin Munz ◽  
Georg Brandl ◽  
Julia K. Frank ◽  
Philipp R. Heuberer ◽  
...  

Abstract Background The purpose of this study was to compare restoration of mechanical limb alignment and three-dimensional component-positioning between conventional and patient-specific instrumentation in total knee arthroplasty. Methods Radiographic data of patients undergoing mobile-bearing total knee arthroplasty (n = 1257), using either conventional (n = 442) or patient-specific instrumentation (n = 812), were analyzed. To evaluate accuracy of axis restoration and 3D-component-positioning between conventional and patient-specific instrumentation, absolute deviations from the targeted neutral mechanical limb alignment and planned implant positions were determined. Measurements were performed on standardized coronal long-leg and sagittal knee radiographs. CT-scans were evaluated for accuracy of axial femoral implant rotation. Outliers were defined as deviations from the targeted neutral mechanical axis of > ± 3° or from the intraoperative component-positioning goals of > ± 2°. Deviations greater than ± 5° from set targets were considered to be severe outliers. Results Deviations from a neutral mechanical axis (conventional instrumentation: 2.3°± 1.7° vs. patient-specific instrumentation: 1.7°± 1.2°; p < 0.001) and numbers of outliers (conventional instrumentation: 25.8% vs. patient-specific instrumentation: 10.1%; p < 0.001) were significantly lower in the patient-specific instrumentation group. Significantly lower mean deviations and less outliers were detected regarding 3D-component-positioning in the patient-specific instrumentation compared to the conventional instrumentation group (all p < 0.05). Conclusions Patient-specific instrumentation prevented from severe limb malalignment and component-positioning outliers (> ± 5° deviation). Use of patient-specific instrumentation proved to be superior to conventional instrumentation in achieving more accurate limb alignment and 3D-component positioning, particularly regarding femoral component rotation. Furthermore, the use of patient-specific instrumentation successfully prevented severe (> 5° deviation) outliers.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Qiguo Rong ◽  
Jianfeng Bai ◽  
Yongling Huang ◽  
Jianhao Lin

Rheumatoid arthritis is the leading cause of disability in young adults. Total knee arthroplasty has been successfully used to restore the joint function. Due to small bone size, osteoporosis, and severe soft tissue disease, standard knee implant sometimes cannot be directly applied clinically and patient-specific designs may be a more rational choice. The purpose of this study was to evaluate the biomechanical behavior of a patient-specific knee implant. A three-dimensional finite element of total knee arthroplasty was developed. The mechanical strength and the wear damage of the articular surfaces were analyzed. The results show that there exist high risks of component fracture and wear damage; the proposed implant design should be abandoned. The presurgery analysis is helpful in avoiding the potential failure.


Author(s):  
Ormonde Mahoney ◽  
Tracey Kinsey ◽  
Nipun Sodhi ◽  
Michael A. Mont ◽  
Antonia F. Chen ◽  
...  

AbstractComponent position of total knee arthroplasty (TKA) has been shown to influence prosthetic survivorships and clinical outcomes. Our objective was to compare the three-dimensional accuracy to plan of robotic-arm assisted TKA (RATKA) with conventional TKA for component position. We conducted a nonrandomized, prospective study comparing 143 RATKA with 86 conventional TKA operated at four U.S. centers between July 2016 and October 2018. Computed tomography (CT) scans obtained approximately 6 weeks postoperatively were analyzed using anatomical landmarks. Absolute deviation from surgical plans were defined as the absolute value of the difference between the CT measurements and surgeons' femoral and tibial component mechanical varus/valgus alignment, tibial component posterior slope, and femoral component internal/external rotation. Differences of absolute deviations were tested using stratified Wilcoxon's tests that controlled for study center. Patient-reported outcome measures collected through 1 postoperative year were modeled using multiple regression controlling for age, sex, body mass index, study center, and the preoperative score. RATKA demonstrated greater accuracy for tibial component alignment (median [25th, 75th percentiles] absolute deviation from plan of all centers combined for conventional vs. RA, 1.7 [0.9, 2.9] vs. 0.9 [0.4, 1.9] degrees, p < 0.001), femoral component rotation (1.5 [0.9, 2.5] vs. 1.3 [0.6, 2.5] degrees, p = 0.015), and tibial slope (2.9 [1.5, 5.0] vs. 1.1 [0.6, 2.0] degrees, p < 0.001). In multivariable analyses, RATKA showed significantly greater Veterans RAND 12-item health survey (VR-12) physical component scores (adjusted mean difference [95% confidence interval (CI)]: 2.4 [0.2, 4.5] points, p = 0.034) and qualitatively greater Knee Society (KS) composite functional scores (3.5 [−1.3, 8.2] points, p = 0.159), though not statistically significant. Compared with conventional instrumentation, RATKA demonstrated greater three-dimensional accuracy to plan for various component positioning parameters and clinical improvements in physical status and function with no major safety concerns during the first postoperative year. These results may be attributed to the preoperative CT scan planning, real-time intraoperative feedback, and stereotactic-guided cutting that takes into consideration patient-specific bony anatomy. These findings support the use of RATKA for enhanced arthroplasty outcomes.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xufeng Wan ◽  
Qiang Su ◽  
Duan Wang ◽  
Mingcheng Yuan ◽  
Yahao Lai ◽  
...  

Abstract Background The reliability of robotic arm-assisted total knee arthroplasty (RA-TKA) has been previously reported. In this study, we evaluated the predictive accuracy of the RA-TKA system in determining the required bone resection and implant size preoperatively and its effect on intraoperative decision-making. Methods Data on the outcomes of RA-TKA procedures performed in our department were prospectively collected. A three-dimensional model of the femur, tibia, and fibula was reconstructed using standard computed tomography (CT) images. The model was used preoperatively to predict bone required resection for the femur and tibia and implant size. Intraoperatively, the images were registered to the local anatomy to create a patient-specific model for decision-making, including real-time measurement of the medial-to-lateral difference in the extension/flexion gap and TKA component alignment. Differences between predicted and real bone resections and implant size were evaluated, and the post-TKA mechanical axis of the lower limb and difference in medial-to-lateral flexion/extension gap were measured. Results The analysis was based on the data of 28 patients who underwent TKA to treat severe osteoarthritis. The RA-TKA system successfully predicted the femoral and tibial component within one implant size in 28/28 cases (100%). For the 168 bone resections performed, including both femoral and tibial cuts, the resection was within 1 mm of the predicted value in 120/168 (71%) of the cuts. The actual versus predicted bone resection was statistically different only for the lateral tibial plateau (p = 0.018). The medial-to-lateral gap difference was between − 1 and 1 mm, except in one case. The achieved lower limb alignment was accurate overall, with the alignment being within < 1.0° of the neutral mechanical axis in 13/28 cases (46%) and within < 3.0° in 28/28 cases (100%). Conclusions The RA-TKA system provided considerable pre- and intraoperative surgical assistance to achieve accurate bone resection, appropriate component sizing, and postoperative alignment after RA-TKA.


Author(s):  
Stephen Thomas ◽  
Ankur Patel ◽  
Corey Patrick ◽  
Gary Delhougne

AbstractDespite advancements in surgical technique and component design, implant loosening, stiffness, and instability remain leading causes of total knee arthroplasty (TKA) failure. Patient-specific instruments (PSI) aid in surgical precision and in implant positioning and ultimately reduce readmissions and revisions in TKA. The objective of the study was to evaluate total hospital cost and readmission rate at 30, 60, 90, and 365 days in PSI-guided TKA patients. We retrospectively reviewed patients who underwent a primary TKA for osteoarthritis from the Premier Perspective Database between 2014 and 2017 Q2. TKA with PSI patients were identified using appropriate keywords from billing records and compared against patients without PSI. Patients were excluded if they were < 21 years of age; outpatient hospital discharges; evidence of revision TKA; bilateral TKA in same discharge or different discharges. 1:1 propensity score matching was used to control patients, hospital, and clinical characteristics. Generalized Estimating Equation model with appropriate distribution and link function were used to estimate hospital related cost while logistic regression models were used to estimate 30, 60, and 90 days and 1-year readmission rate. The study matched 3,358 TKAs with PSI with TKA without PSI patients. Mean total hospital costs were statistically significantly (p < 0.0001) lower for TKA with PSI ($14,910; 95% confidence interval [CI]: $14,735–$15,087) than TKA without PSI patients ($16,018; 95% CI: $15,826–$16,212). TKA with PSI patients were 31% (odds ratio [OR]: 0.69; 95% CI: 0.51–0.95; p-value = 0.0218) less likely to be readmitted at 30 days; 35% (OR: 0.65; 95% CI: 0.50–0.86; p-value = 0.0022) less likely to be readmitted at 60 days; 32% (OR: 0.68; 95% CI: 0.53–0.88; p-value = 0.0031) less likely to be readmitted at 90 days; 28% (OR: 0.72; 95% CI: 0.60–0.86; p-value = 0.0004) less likely to be readmitted at 365 days than TKA without PSI patients. Hospitals and health care professionals can use retrospective real-world data to make informed decisions on using PSI to reduce hospital cost and readmission rate, and improve outcomes in TKA patients.


Author(s):  
Mehmet Emin Simsek ◽  
Mustafa Akkaya ◽  
Safa Gursoy ◽  
Özgür Kaya ◽  
Murat Bozkurt

AbstractThis study aimed to investigate whether overhang or underhang around the tibial component that occurs during the placement of tibial baseplates was affected by different slope angles of the tibial plateau and determine the changes in the lateral and medial plateau diameters while changing the slope angle in total knee arthroplasty. Three-dimensional tibia models were reconstructed using the computed tomography scans of 120 tibial dry bones. Tibial plateau slope cuts were performed with 9, 7, 5, 3, and 0 degrees of slope angles 2-mm below the subchondral bone in the deepest point of the medial plateau. Total, lateral, and medial tibial plateau areas and overhang/underhang rates were measured at each cut level. Digital implantations of the asymmetric and symmetric tibial baseplates were made on the tibial plateau with each slope angles. Following the implantations, the slope angle that prevents overhang or underhang at the bone border and the slope angle that has more surface area was identified. A significant increase was noted in the total tibial surface area, lateral plateau surface area, and lateral anteroposterior distance, whereas the slope cut angles were changed from 9 to 0 degrees in both gender groups. It was found that the amount of posteromedial underhang and posterolateral overhang increased in both the asymmetric and symmetric tibial baseplates when the slope angle was changed from 0 to 9 degrees. Although the mediolateral diameter did not change after the proximal tibia cuts at different slope angles, the surface area and anteroposterior diameter of the lateral plateau could change, leading to increased lateral plateau area. Although prosthesis designs are highly compatible with the tibial surface area, it should be noted that the component overhangs, especially beyond the posterolateral edge, it can be prevented by changing the slope cut angle in males and females.


Sign in / Sign up

Export Citation Format

Share Document