scholarly journals Global Thrombosis Test: Occlusion Is Attributable to Shear-Induced Platelet Thrombus Formation

TH Open ◽  
2021 ◽  
Vol 05 (04) ◽  
pp. e591-e597
Author(s):  
Diana A. Gorog ◽  
Junichiro Yamamoto
1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


1979 ◽  
Vol 42 (02) ◽  
pp. 603-610 ◽  
Author(s):  
J H Adams ◽  
J R A Mitchell

SummaryThe ability of potential anti-thrombotic agents to modify platelet-thrombus formation in injured cerebral arteries in the rabbit was tested. Low doses of heparin were without effect, while higher doses produced variable suppression of white body formation but at the expense of bleeding. Aspirin did not inhibit white body formation but another non-steroid anti-inflammatory agent, flurbiprofen was able to do so, as was the anti-gout agent, sulphinpyrazone. Magnesium salts both topically and parenterally, suppressed thrombus formation and increased the concentration of ADP which was required to initiate thrombus production at minor injury sites.


ASAIO Journal ◽  
1996 ◽  
Vol 42 (2) ◽  
pp. 59
Author(s):  
G. N. Palatianos ◽  
M. K. Dewanjee ◽  
S. Wu ◽  
D. De ◽  
S. Novak ◽  
...  

Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 783-786 ◽  
Author(s):  
BS Coller ◽  
JD Folts ◽  
LE Scudder ◽  
SR Smith

A murine monoclonal antibody directed at the platelet glycoprotein IIb/IIIa complex, which blocks platelet aggregation ex vivo, was tested for its antithrombotic effects in an established animal model of acute platelet thrombus formation in partially stenosed arteries. Infusion of 0.7 to 0.8 mg/kg of the F(ab')2 fragment of the antibody completely blocked new thrombus formation despite multiple provocations, making it the most potent antithrombotic agent tested in this model.


2003 ◽  
Vol 197 (11) ◽  
pp. 1585-1598 ◽  
Author(s):  
Shahrokh Falati ◽  
Qingde Liu ◽  
Peter Gross ◽  
Glenn Merrill-Skoloff ◽  
Janet Chou ◽  
...  

Using a laser-induced endothelial injury model, we examined thrombus formation in the microcirculation of wild-type and genetically altered mice by real-time in vivo microscopy to analyze this complex physiologic process in a system that includes the vessel wall, the presence of flowing blood, and the absence of anticoagulants. We observe P-selectin expression, tissue factor accumulation, and fibrin generation after platelet localization in the developing thrombus in arterioles of wild-type mice. However, mice lacking P-selectin glycoprotein ligand 1 (PSGL-1) or P-selectin, or wild-type mice infused with blocking P-selectin antibodies, developed platelet thrombi containing minimal tissue factor and fibrin. To explore the delivery of tissue factor into a developing thrombus, we identified monocyte-derived microparticles in human platelet–poor plasma that express tissue factor, PSGL-1, and CD14. Fluorescently labeled mouse microparticles infused into a recipient mouse localized within the developing thrombus, indicating that one pathway for the initiation of blood coagulation in vivo involves the accumulation of tissue factor– and PSGL-1–containing microparticles in the platelet thrombus expressing P-selectin. These monocyte-derived microparticles bind to activated platelets in an interaction mediated by platelet P-selectin and microparticle PSGL-1. We propose that PSGL-1 plays a role in blood coagulation in addition to its known role in leukocyte trafficking.


1981 ◽  
Author(s):  
Y C Chen ◽  
K K Wu ◽  
E R Hall ◽  
D L Venton ◽  
G C Le Breton

It is well recognized that thromboxane A2(TXA2) plays an important role in platelet reactivity. To determine the role of TXA2 in platelet-vessel wall (P-V) interaction, the effect of 1-benzylimidazole (1-BI), a specific inhibitor of thromboxane synthetase, and 13-azaprostanoic acid (APA), a TXA2 antagonist, on platelet thrombus formation was evaluated in vivo in NZW male rabbits using the autologous indium-111 (111In) labeled platelet technique. Rabbits were treated with intravenous 1-BI or APA or vehicles. After injection of autologous 111In-platelets, de-endothelialization of the abdominal aorta was created by a balloon catheter technique. At 3 hrs, blood samples were obtained and the animals were sacrificed. The aortae were removed and the injured and uninjured segments were dissected. Radioactivity counts and dry weight of the tissues and blood were determined. The vascular radioactivity counts were converted to platelet numbers by using a standard linear calibration curve. As small numbers of platelets adhered to normal vessel wall nonspecifically, this number was subtracted to obtain specific platelet accumulation at the injured sites. 1-BI at 10mg/kg reduced the specific platelet accumulation significantly (n=5, 12.3±S.D.I.5×106 pl/gm tissue; p<0.01) when compared with the controls (n=10, 33.0±5.1×106 pl/gm tissue). Platelet accumulation was further reduced by increasing the dosage to 30mg/kg. By contrast, APA injection (10mg/kg) had no significant effect. However, when APA was given by constant infusion at 250μg/kg/min 1 hr prior to injury, the APA-treated animals had an 80% reduction of platelet accumulation relative to controls. These findings indicate that TXA2 plays an important role in P-V interaction and specific inhibition of TXA2 appears to be efficacious in eliminating platelet thrombus formation.


Sign in / Sign up

Export Citation Format

Share Document