scholarly journals High Fructose Negatively Impacts Proliferation of NSC-34 Motor Neuron Cell Line

Author(s):  
Divya Lodha ◽  
Jamuna R. Subramaniam

Abstract Objectives The main aim of this study is to identify the deleterious effects of indiscriminately consumed high fructose on motor neurons that are critically affected in many neurological conditions causing movement disorders including paralysis. Materials and Methods Neuroblastoma x mouse spinal cord motor neuron cell line (NSC-34) motor neuron cell lines were treated with high fructose and oxygen supplementation (18.8%) and assayed for cell proliferation/death, reactive oxygen species (ROS) generation, and oxidative stress response induction Statistical Analysis Mean and standard deviation, significance with and without high fructose (F)-5%, were estimated by t-tests using GraphPad Prism ver. 8.2.1 Results F-5% along with O2 (18.8%) annihilates the cells (∼85%) by day10 and inhibits cell division as observed by the presence of multinucleated cells. Unexpectedly, 1 to 2% of cells that survived, differentiated and displayed progressive neurite extension. Though not healthy, they were viable up to 80 days. F-5% increased ROS levels (∼34%) not accompanied by concomitant enhanced expression of oxidative stress response regulator, the transcription factor, nrf-2, or downstream effector, sod-1. Conclusion High fructose is extremely harmful to NSC-34 motor neuron cell line.

PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22300 ◽  
Author(s):  
Sunyoung Hwang ◽  
Minkyeong Kim ◽  
Sangryeol Ryu ◽  
Byeonghwa Jeon

2010 ◽  
Vol 36 (8) ◽  
pp. 907-917 ◽  
Author(s):  
Supriyo De ◽  
Somiranjan Ghosh ◽  
Raghunath Chatterjee ◽  
Y-Q Chen ◽  
Linda Moses ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
pp. 10 ◽  
Author(s):  
Andreas G Chiocchetti ◽  
Denise Haslinger ◽  
Maximilian Boesch ◽  
Thomas Karl ◽  
Stefan Wiemann ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Mariola Herbet ◽  
Agnieszka Korga ◽  
Monika Gawrońska-Grzywacz ◽  
Magdalena Izdebska ◽  
Iwona Piątkowska-Chmiel ◽  
...  

Chronic environmental stress is associated with reactive oxygen species (ROS) overproduction and the pathogenesis of depression. The purpose of this study was to evaluate biochemical and molecular changes associated with ROS generation in the brains of rats submitted to chronic variable stress. Male Wistar rats (50–55 days old, weighing 200–250 g) were divided in two groups (n=10): control and stressed. Rats in the stressed group were exposed to stress conditions for 40 days. The animals were decapitated and the brain samples were collected. In prefrontal cortex, we measured the following biochemical parameters: lipid peroxidation and concentration of glutathione—GSH, GSSG, GSH/GSSG ratio, glutathione peroxidase, and glutathione reductase activities. In the hippocampus marker of DNA, oxidative damage and expression of DNA-repairing genes (Ogg1,MsrA) and gene-encoding antioxidative transcriptional factor (Nrf2) were determined. The results demonstrate indirect evidence of ROS overproduction and presence of oxidative stress. They also reveal disruption of oxidative defense systems (decreased GR activity, diminished GSH/GSSG ratio, and decreasedNrf2expression) and activation of the oxidative DNA repair system (increasedOgg1andMsrAexpression). Together, the presented data suggest that independent activation of oxidative stress response genes occurs in chronic variable stress conditions.


Sign in / Sign up

Export Citation Format

Share Document