Gene Expression, Gene Regulation and Gene Transfer in the Inner Ear

2003 ◽  
Vol 82 (1) ◽  
pp. 40-41 ◽  
Author(s):  
T. Stöver
2000 ◽  
Vol 59 (1) ◽  
pp. 45-51
Author(s):  
Tatsuya Yamasoba ◽  
Masao Yagi ◽  
Mitsuya Suzuki

2021 ◽  
Vol 22 (6) ◽  
pp. 3234
Author(s):  
Juhyun Lee ◽  
Si-Eun Sung ◽  
Janghyun Lee ◽  
Jin Young Kang ◽  
Joon-Hwa Lee ◽  
...  

Riboswitches are segments of noncoding RNA that bind with metabolites, resulting in a change in gene expression. To understand the molecular mechanism of gene regulation in a fluoride riboswitch, a base-pair opening dynamics study was performed with and without ligands using the Bacillus cereus fluoride riboswitch. We demonstrate that the structural stability of the fluoride riboswitch is caused by two steps depending on ligands. Upon binding of a magnesium ion, significant changes in a conformation of the riboswitch occur, resulting in the greatest increase in their stability and changes in dynamics by a fluoride ion. Examining hydrogen exchange dynamics through NMR spectroscopy, we reveal that the stabilization of the U45·A37 base-pair due to the binding of the fluoride ion, by changing the dynamics while maintaining the structure, results in transcription regulation. Our results demonstrate that the opening dynamics and stabilities of a fluoride riboswitch in different ion states are essential for the genetic switching mechanism.


2021 ◽  
Vol 22 (5) ◽  
pp. 2599
Author(s):  
Mégane Collobert ◽  
Ozvan Bocher ◽  
Anaïs Le Nabec ◽  
Emmanuelle Génin ◽  
Claude Férec ◽  
...  

About 8% of the human genome is covered with candidate cis-regulatory elements (cCREs). Disruptions of CREs, described as “cis-ruptions” have been identified as being involved in various genetic diseases. Thanks to the development of chromatin conformation study techniques, several long-range cystic fibrosis transmembrane conductance regulator (CFTR) regulatory elements were identified, but the regulatory mechanisms of the CFTR gene have yet to be fully elucidated. The aim of this work is to improve our knowledge of the CFTR gene regulation, and to identity factors that could impact the CFTR gene expression, and potentially account for the variability of the clinical presentation of cystic fibrosis as well as CFTR-related disorders. Here, we apply the robust GWAS3D score to determine which of the CFTR introns could be involved in gene regulation. This approach highlights four particular CFTR introns of interest. Using reporter gene constructs in intestinal cells, we show that two new introns display strong cooperative effects in intestinal cells. Chromatin immunoprecipitation analyses further demonstrate fixation of transcription factors network. These results provide new insights into our understanding of the CFTR gene regulation and allow us to suggest a 3D CFTR locus structure in intestinal cells. A better understand of regulation mechanisms of the CFTR gene could elucidate cases of patients where the phenotype is not yet explained by the genotype. This would thus help in better diagnosis and therefore better management. These cis-acting regions may be a therapeutic challenge that could lead to the development of specific molecules capable of modulating gene expression in the future.


2017 ◽  
Vol 8 (7) ◽  
pp. 4973-4977 ◽  
Author(s):  
Kai Zhang ◽  
Xue-Jiao Yang ◽  
Wei Zhao ◽  
Ming-Chen Xu ◽  
Jing-Juan Xu ◽  
...  

A versatile strategy is reported which permits gene regulation and imaging in living cells via an RNA interference antagonistic probe.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
N. Farrow ◽  
D. Miller ◽  
P. Cmielewski ◽  
M. Donnelley ◽  
R. Bright ◽  
...  

2006 ◽  
Vol 111 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Satoshi Kotajima ◽  
Koshi N. Kishimoto ◽  
Munenori Watanuki ◽  
Masahito Hatori ◽  
Shoichi Kokubun

2006 ◽  
Vol 1111 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Michael D. Weston ◽  
Marsha L. Pierce ◽  
Sonia Rocha-Sanchez ◽  
Kirk W. Beisel ◽  
Garrett A. Soukup

Sign in / Sign up

Export Citation Format

Share Document