Free-Surface Profile of Open-Channel Flow with Wavy Boundary

1995 ◽  
Vol 121 (7) ◽  
pp. 533-539 ◽  
Author(s):  
Kazumasa Mizumura
1993 ◽  
Vol 20 (3) ◽  
pp. 536-539 ◽  
Author(s):  
Willi H. Hager

Based on a large number of experiments, a simple formula is developed for the time-averaged free surface profile of a classical hydraulic jump. This novel approach is based on the length of the roller. The resulting surface profile fits the data well for usual inflow Froude numbers in the range of 2 to 10. Key words: backwater, channel flow, hydraulics, open channel, surface profile.


1995 ◽  
Vol 286 ◽  
pp. 1-23 ◽  
Author(s):  
Vadim Borue ◽  
Steven A. Orszag ◽  
Ilya Staroselsky

We report direct numerical simulations of incompressible unsteady open-channel flow. Two mechanisms of turbulence production are considered: shear at the bottom and externally imposed stress at the free surface. We concentrate upon the effects of mutual interaction of small-amplitude gravity waves with in-depth turbulence and statistical properties of the near-free-surface region. Extensions of our approach can be used to study turbulent mixing in the upper ocean and wind–sea interaction, and to provide diagnostics of bulk turbulence.


2002 ◽  
Vol 46 ◽  
pp. 373-378 ◽  
Author(s):  
Akihiko NAKAYAMA ◽  
Satoshi YOKOJIMA

1996 ◽  
Vol 23 (6) ◽  
pp. 1272-1284 ◽  
Author(s):  
H. Chanson

Open channel flow situations with near-critical flow conditions are often characterized by the development of free-surface instabilities (i.e., undulations). The paper develops a review of several near-critical flow situations. Experimental results are compared with ideal-fluid flow calculations. The analysis is completed by a series of new experiments. The results indicate that, for Froude numbers slightly above unity, the free-surface characteristics are very similar. However, with increasing Froude numbers, distinctive flow patterns develop. Key words: open channel flow, critical flow conditions, free-surface undulations, flow instability, undular surge, undular broad-crested weir flow, culvert flow.


Sign in / Sign up

Export Citation Format

Share Document