Nonlinear Wave Forces on Vertical Cylinders of Arbitrary Cross Section

Author(s):  
S. A. Ghalayini ◽  
A. N. Williams
1995 ◽  
Vol 117 (1) ◽  
pp. 12-18 ◽  
Author(s):  
J. H. Vazquez ◽  
A. N. Williams

A complete second-order solution is presented for the hydrodynamic forces due to the action of bichromatic, bidirectional waves on an array of bottom-mounted, surface-piercing cylinders of arbitrary cross section in water of uniform finite depth. Based on the constant structural cross section, the first-order problem is solved utilizing a two-dimensional Green function approach, while an assisting radiation potential approach is used to obtain the hydrodynamic loads due to the second-order potential. Results are presented which illustrate the influence of wave directionality on the second-order sum and difference frequency hydrodynamic forces on a two-cylinder array. It is found that wave directionality may have a significant influence on the second-order hydrodynamic forces on these arrays and that the assumption of unidirectional waves does not always lead to conservative estimates of the second-order loading.


1991 ◽  
Vol 113 (1) ◽  
pp. 1-8
Author(s):  
K. Masuda ◽  
T. Nagai

The present paper is concerned with development of a powerful scheme for calculating nonlinear wave forces on a pair of vertical cylinders with arbitrary cross sections. The Laguerre integration method is applied and its convergence is confirmed in the cases of a single vertical cylinder and a twin circular cylinder. Further, the present method is compared with the method given by Eatock-Taylor and Hung [9], and then the computational times and those properties for a numerical calculation are investigated. The numerical results for maximum wave forces on the vertical cylinders obtained by the present method are compared with the experimental results, so that the usefulness is clarified.


1986 ◽  
Vol 1 (20) ◽  
pp. 177
Author(s):  
Akinori Yoshida ◽  
Norio Iida ◽  
Keisuke Murakami

Wave diffractions by a number of (a group of or a row of) vertical cylinders have been investigated in connection with, e.g., multilegged offshore structures (Spring and Monkmeyer(1974), Ohkusu(1974), Chakrabarti(1978), Mciver and Evans(1984), etc.); Wave-Power absorption devices (Miles (1983), Falnes(1984) , Kyllingstad(1984) , etc.); Wave barrier systems (Massel(1976), Kakuno and Oda(1986), etc.). Most of the previous works were, however, mainly aimed at the wave diffractions by cylinders of circular cross section and/or by cylinders of relatively small dimensions compared to wave length. In this paper, we describe a simple yet versatile analytical method to solve wave diffractions by infinite rows of vertical cylinders. In the method, it is assumed, in addition to usual linearised small amplitude assumptions, that: the row of cylinders is composed of infinite number of surface-piercing evenly spaced equal cylinders fixed on sea bottom; incident wave direction is perpendicular to the row; the number of rows may be arbitrary, at least in principle; the cross sectional shape of the cylinders may be arbitrary as long as it is symmetrical with respect to the incident wave ray; and the cylinders are relatively large compared to incident wave length so that inertial forces are predominant to drag forces.


1990 ◽  
Vol 137 (2) ◽  
pp. 145 ◽  
Author(s):  
C.Y. Kim ◽  
S.D. Yu ◽  
R.F. Harrington ◽  
J.W. Ra ◽  
S.Y. Lee

Sign in / Sign up

Export Citation Format

Share Document