scholarly journals WAVE DIFFRACTIONS BY ROWS OF VERTICAL CYLINDERS OF ARBITRARY CROSS SECTION

1986 ◽  
Vol 1 (20) ◽  
pp. 177
Author(s):  
Akinori Yoshida ◽  
Norio Iida ◽  
Keisuke Murakami

Wave diffractions by a number of (a group of or a row of) vertical cylinders have been investigated in connection with, e.g., multilegged offshore structures (Spring and Monkmeyer(1974), Ohkusu(1974), Chakrabarti(1978), Mciver and Evans(1984), etc.); Wave-Power absorption devices (Miles (1983), Falnes(1984) , Kyllingstad(1984) , etc.); Wave barrier systems (Massel(1976), Kakuno and Oda(1986), etc.). Most of the previous works were, however, mainly aimed at the wave diffractions by cylinders of circular cross section and/or by cylinders of relatively small dimensions compared to wave length. In this paper, we describe a simple yet versatile analytical method to solve wave diffractions by infinite rows of vertical cylinders. In the method, it is assumed, in addition to usual linearised small amplitude assumptions, that: the row of cylinders is composed of infinite number of surface-piercing evenly spaced equal cylinders fixed on sea bottom; incident wave direction is perpendicular to the row; the number of rows may be arbitrary, at least in principle; the cross sectional shape of the cylinders may be arbitrary as long as it is symmetrical with respect to the incident wave ray; and the cylinders are relatively large compared to incident wave length so that inertial forces are predominant to drag forces.

Author(s):  
Xiaokang Xin ◽  
Fengpeng Bai ◽  
Kefeng Li

A numerical model based on the Saint-Venant equations (one-dimensional shallow water equations) is proposed to simulate shallow flows in an open channel with regular and irregular cross-section shapes. The Saint-Venant equations are solved by the finite-volume method based on Godunov-type framework with a modified Harten, Lax, and van Leer (HLL) approximate Riemann solver. Cross-sectional area is replaced by water surface level as one of primitive variables. Two numerical integral algorithms, compound trapezoidal and Gauss–Legendre integrations, are used to compute the hydrostatic pressure thrust term for natural streams with arbitrary and irregular cross-sections. The Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) and second-order Runge–Kutta methods is adopted to achieve second-order accuracy in space and time, respectively. The performance of the resulting scheme is evaluated by application in rectangular channels, trapezoidal channels, and a natural mountain river. The results are compared with analytical solutions and experimental or measured data. It is demonstrated that the numerical scheme can simulate shallow flows with arbitrary cross-section shapes in practical conditions.


Author(s):  
Ehsan Sadeghi ◽  
Majid Bahrami ◽  
Ned Djilali

In many practical instances such as basic design, parametric study, and optimization analysis of thermal systems, it is often very convenient to have closed form relations to obtain the trends and a reasonable estimate of the Nusselt number. However, finding exact solutions for many practical singly-connected cross-sections, such as trapezoidal microchannels, is complex. In the present study, the square root of cross-sectional area is proposed as the characteristic length scale for Nusselt number. Using analytical solutions of rectangular, elliptical, and triangular ducts, a compact model for estimation of Nusselt number of fully-developed, laminar flow in microchannels of arbitrary cross-sections with “H1” boundary condition (constant axial wall heat flux with constant peripheral wall temperature) is developed. The proposed model is only a function of geometrical parameters of the cross-section, i.e., area, perimeter, and polar moment of inertia. The present model is verified against analytical and numerical solutions for a wide variety of cross-sections with a maximum difference on the order of 9%.


Author(s):  
Mario F. Letelier ◽  
Dennis A. Siginer ◽  
Felipe Godoy

An analytical method for determining the velocity field, shear stress and energy dissipation in viscoplastic flow in non-circular straight tubes is presented. Bingham’s model of fluid is used for the case of tubes with several cross-sectional contours that can be arbitrarily chosen through a shape factor imposed in the solution for the longitudinal velocity. The analysis is extended to steady flow in tubes in which the cross-section contour exhibits sharp corners. In these cases three flow zones are distinguished: stagnant, non-zero deformation, and plug zones. The method provides the expressions for determining the boundaries and characteristics of those three zones for a wide variety of cross-section shapes. In particular the dynamics of plug-zones for large values of the yield stress and for contours that markedly differ from circumferences is analyzed. Energy dissipation is determined throughout the entire cross-section, so that the effect of shape on mechanical energy loss is assessed in terms of the yield stress and viscosity of the fluid. Some general expressions that help understand energy dissipation mechanisms are derived by using natural coordinates for the velocity field and related variables. These results draw on several recent works from other researchers and the present authors, which have highlighted the significant difficulty of determining the zones of zero deformation in viscoplastic flow when the related solid boundaries are not elementary.


Author(s):  
Duncan Joyce ◽  
William J. Parnell ◽  
Raphaël C. Assier ◽  
I. David Abrahams

In Parnell & Abrahams (2008 Proc. R. Soc. A 464 , 1461–1482. ( doi:10.1098/rspa.2007.0254 )), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme.


1995 ◽  
Vol 117 (1) ◽  
pp. 12-18 ◽  
Author(s):  
J. H. Vazquez ◽  
A. N. Williams

A complete second-order solution is presented for the hydrodynamic forces due to the action of bichromatic, bidirectional waves on an array of bottom-mounted, surface-piercing cylinders of arbitrary cross section in water of uniform finite depth. Based on the constant structural cross section, the first-order problem is solved utilizing a two-dimensional Green function approach, while an assisting radiation potential approach is used to obtain the hydrodynamic loads due to the second-order potential. Results are presented which illustrate the influence of wave directionality on the second-order sum and difference frequency hydrodynamic forces on a two-cylinder array. It is found that wave directionality may have a significant influence on the second-order hydrodynamic forces on these arrays and that the assumption of unidirectional waves does not always lead to conservative estimates of the second-order loading.


2010 ◽  
Vol 638-642 ◽  
pp. 1579-1584 ◽  
Author(s):  
A.V. Nagasekhar ◽  
Carlos H. Cáceres ◽  
Mark Easton

Specimens of rectangular and circular cross section of a Mg-9Al binary alloy have been tensile tested and the cross section of undeformed specimens examined using scanning electron microscopy. The rectangular cross sections showed three scales in the cellular intermetallics network: coarse at the core, fine at the surface and very fine at the corners, whereas the circular ones showed only two, coarse at the core and fine at the surface. The specimens of rectangular cross section exhibited higher yield strength in comparison to the circular ones. Possible reasons for the observed increased strength of the rectangular sections are discussed.


Author(s):  
Shiva P Pudasaini ◽  
Yongqi Wang ◽  
Kolumban Hutter

This paper presents a new model and discussions about the motion of avalanches from initiation to run-out over moderately curved and twisted channels of complicated topography and its numerical simulations. The model is a generalization of a well established and widely used depth-averaged avalanche model of Savage & Hutter and is published with all its details in Pudasaini & Hutter (Pudasaini & Hutter 2003 J. Fluid Mech. 495 , 193–208). The intention was to be able to describe the flow of a finite mass of snow, gravel, debris or mud, down a curved and twisted corrie of nearly arbitrary cross-sectional profile. The governing equations for the distribution of the avalanche thickness and the topography-parallel depth-averaged velocity components are a set of hyperbolic partial differential equations. They are solved for different topographic configurations, from simple to complex, by applying a high-resolution non-oscillatory central differencing scheme with total variation diminishing limiter. Here we apply the model to a channel with circular cross-section and helical talweg that merges into a horizontal channel which may or may not become flat in cross-section. We show that run-out position and geometry depend strongly on the curvature and twist of the talweg and cross-sectional geometry of the channel, and how the topography is shaped close to run-out zones.


1968 ◽  
Vol 90 (3) ◽  
pp. 435-440 ◽  
Author(s):  
E. M. Sparrow ◽  
H. S. Yu

A method of analysis is presented for determining closed-form solutions for torsion of inhomogeneous prismatic bars of arbitrary cross section, the inhomogeneity stemming from the layering of materials of different elastic properties. It is demonstrated that the solution method is very easy to apply and provides results of high accuracy. As an application, solutions are obtained for the torsion of a bar of circular cross section consisting of two materials separated by a plane interface. The results are compared with those of various limiting cases and excellent agreement is found to exist. Among the limiting cases, an exact solution was derived by Green’s functions for the problem in which the interface between the materials coincides with a diameter of the circular cross section.


Sign in / Sign up

Export Citation Format

Share Document