Roll Waves in Overland Flow

2005 ◽  
Vol 10 (2) ◽  
pp. 110-117 ◽  
Author(s):  
Q. Q. Liu ◽  
L. Chen ◽  
J. C. Li ◽  
Vijay P. Singh
Keyword(s):  
CATENA ◽  
2021 ◽  
Vol 198 ◽  
pp. 105068
Author(s):  
Jingwen Wang ◽  
Kuandi Zhang ◽  
Pu Li ◽  
Yu Meng ◽  
Luyou Zhao

2019 ◽  
Vol 50 (5) ◽  
pp. 1324-1343 ◽  
Author(s):  
Jingwen Wang ◽  
Kuandi Zhang ◽  
Mingyi Yang ◽  
He Meng ◽  
Pu Li

Abstract Overland flow is the initial driver of slope surface erosion. To discover resistance characteristics of overland flow influenced by rainfall intensity and roughness, indoor simulated rainfall experiments with six kinds of roughness, five flow discharges, and five rainfall intensities were investigated. Results showed that overland flow over rough surfaces could be considered as laminar and turbulent flow when using flow Reynolds number. According to roll waves observed, flow regimes belonged to the laminar transitional zone based on the viscosity-to-depth ratio. A critical water depth formula for overland flow was re-derived, and it showed that this test water flow consisted of supercritical flow in most cases, and subcritical flow in only a few cases. The flow resistance coefficient increased with increasing roughness, whereas it decreased as rainfall intensity increased. Considering the ‘increasing resistance’ phenomenon, this study focused on frictional resistance, thickness of the viscous sublayer, pressure drag and roll waves. Finally, a formula for sheet flow resistance was proposed based on resistance segmentation and multi-element linear regression. These findings are of significance both for understanding the characteristics and development of overland flow and overland flow dynamics.


1977 ◽  
Vol 8 (4) ◽  
pp. 249-256 ◽  
Author(s):  
Mohammad Akram Gill

In the differential equation of the overland turbulent flow which was first postulated by Horton, Eq.(6), the value of c equals 5/3. For this value of c, the flow equation could not be integrated algebraically. Horton solved the equation for c = 2 and believed that his solution was valid for mixed flow. The flow equation with c = 5/3 is solved algebraically herein. It is shown elsewhere (Gill 1976) that the flow equation can indeed be integrated for any rational value of c.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1851-1856 ◽  
Author(s):  
J. L. Lai ◽  
K. S. L. Lo

A mixing-based model for describing solute transfer to overland flow was developed. This model included a time-dependent mixing depth of the top layer and a complete-mixed surface runoff zone. In a series of laboratory experiments, runoff was passed at various velocities and depths over a medium bed. The media were saturated with uniform concentration of potassium chloride solution. Runoff water was sampled at the beginning and end of the flume and the potassium chloride concentration analyzed. Using this model, dimensionless ultimate mixing depth and dimensionless change rate of mixing depth from experimental data were investigated and implemented. The results showed that the Reynolds number and relative roughness are two important factors.


2021 ◽  
pp. 126272
Author(s):  
Misagh Parhizkar ◽  
Mahmood Shabanpour ◽  
Manuel Esteban Lucas-Borja ◽  
Demetrio Antonio Zema
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2032
Author(s):  
Pâmela A. Melo ◽  
Lívia A. Alvarenga ◽  
Javier Tomasella ◽  
Carlos R. Mello ◽  
Minella A. Martins ◽  
...  

Landform classification is important for representing soil physical properties varying continuously across the landscape and for understanding many hydrological processes in watersheds. Considering it, this study aims to use a geomorphology map (Geomorphons) as an input to a physically based hydrological model (Distributed Hydrology Soil Vegetation Model (DHSVM)) in a mountainous headwater watershed. A sensitivity analysis of five soil parameters was evaluated for streamflow simulation in each Geomorphons feature. As infiltration and saturation excess overland flow are important mechanisms for streamflow generation in complex terrain watersheds, the model’s input soil parameters were most sensitive in the “slope”, “hollow”, and “valley” features. Thus, the simulated streamflow was compared with observed data for calibration and validation. The model performance was satisfactory and equivalent to previous simulations in the same watershed using pedological survey and moisture zone maps. Therefore, the results from this study indicate that a geomorphologically based map is applicable and representative for spatially distributing hydrological parameters in the DHSVM.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2119
Author(s):  
Luís Mesquita David ◽  
Rita Fernandes de Carvalho

Designing for exceedance events consists in designing a continuous route for overland flow to deal with flows exceeding the sewer system’s capacity and to mitigate flooding risk. A review is carried out here on flood safety/hazard criteria, which generally establish thresholds for the water depth and flood velocity, or a relationship between them. The effects of the cross-section shape, roughness and slope of streets in meeting the criteria are evaluated based on equations, graphical results and one case study. An expedited method for the verification of safety criteria based solely on flow is presented, saving efforts in detailing models and increasing confidence in the results from simplified models. The method is valid for 0.1 m2/s 0.5 m2/s. The results showed that a street with a 1.8% slope, 75 m1/3s−1 and a rectangular cross-section complies with the threshold 0.3 m2/s for twice the flow of a street with the same width but with a conventional cross-section shape. The flow will be four times greater for a 15% street slope. The results also highlighted that the flood flows can vary significantly along the streets depending on the sewers’ roughness and the flow transfers between the major and minor systems, such that the effort detailing a street’s cross-section must be balanced with all of the other sources of uncertainty.


2021 ◽  
Vol 13 (13) ◽  
pp. 7189
Author(s):  
Beniamino Russo ◽  
Manuel Gómez Valentín ◽  
Jackson Tellez-Álvarez

Urban drainage networks should be designed and operated preferably under open channel flow conditions without flux return, backwater, or overflows. In the case of extreme storm events, urban pluvial flooding is generated by the excess of surface runoff that could not be conveyed by pressurized sewer pipes, due to its limited capacity or, many times, due to the poor efficiency of surface drainage systems to collect uncontrolled overland flow. Generally, the hydraulic design of sewer systems is addressed more for underground networks, neglecting the surface drainage system, although inadequate inlet spacings and locations can cause dangerous flooding with relevant socio-economic impacts and the interruption of critical services and urban activities. Several experimental and numerical studies carried out at the Technical University of Catalonia (UPC) and other research institutions demonstrated that the hydraulic efficiency of inlets can be very low under critical conditions (e.g., high circulating overland flow on steep areas). In these cases, the hydraulic efficiency of conventional grated inlets and continuous transverse elements can be around 10–20%. Their hydraulic capacity, expressed in terms of discharge coefficients, shows the same criticism with values quite far from those that are usually used in several project practice phases. The grate clogging phenomenon and more intense storm events produced by climate change could further reduce the inlets’ performance. In this context, in order to improve the flood urban resilience of our cities, the relevance of the hydraulic behavior of surface drainage systems is clear.


Sign in / Sign up

Export Citation Format

Share Document