Experimental Evaluation of Compressive Behavior of Orthotropic Steel Plates for the New San Francisco–Oakland Bay Bridge

2006 ◽  
Vol 11 (2) ◽  
pp. 140-150 ◽  
Author(s):  
C. C. Chou ◽  
C. M. Uang ◽  
F. Seible
2011 ◽  
Vol 38 (1) ◽  
pp. 60-70 ◽  
Author(s):  
Mehdi H.K. Kharrazi ◽  
Carlos E. Ventura ◽  
Helmut G.L. Prion

In this paper, the effectiveness of the Modified Plate–Frame Interaction (M-PFI) model is evaluated by comparing its outcomes against those from experimental results obtained from a number of steel plate walls (SPWs) tested at different universities. As a result of the comparison, the M-PFI model was found to provide satisfactory predictions for SPW specimens constructed with steel plates welded to column and beam members. The M-PFI model was able to predict the initial stiffness, as well as to evaluate whether the boundary members of the SPW have sufficient capacity to allow for the infill plate to yield entirely. However, the model was found to underestimate the ultimate capacity of the SPW system mainly because, among other reasons, the material model used for its underlying theory is the elastic – perfectly plastic material model.


1993 ◽  
Vol 9 (3) ◽  
pp. 559-579 ◽  
Author(s):  
Cynthia L. Perry ◽  
Eduardo A. Fierro ◽  
Hassan Sedarat ◽  
Roger E. Scholl

For the first time in the United States, earthquake energy dissipation devices have been used for the seismic upgrade of a building located in San Francisco, California. The devices used are Added Damping and Stiffness (ADAS) elements which consist of 50 ksi steel plates which deform plastically during severe earthquakes to dissipate energy. The ADAS elements were used in conjunction with steel chevron braces as part of the seismic upgrade of a 2-story nonductile concrete frame structure built in 1967. The building suffered both structural and nonstructural damage during the 1989 Loma Prieta Earthquake and appeared to be a life safety hazard for a major earthquake. The ADAS upgrade scheme was selected over other more conventional schemes, in part, because the design seismic force could be limited to the capacity of the existing foundation system. The paper provides a case study and summarizes the seismic evaluation and upgrade design, the linear and nonlinear analyses performed, modeling assumptions, unique design details, the permit approval process, and final construction. In addition, comparisons are presented showing shear forces and displacements for the original building and the final design with chevron braces and ADAS elements.


Author(s):  
László G. Kömüves

Light microscopic immunohistochemistry based on the principle of capillary action staining is a widely used method to localize antigens. Capillary action immunostaining, however, has not been tested or applied to detect antigens at the ultrastructural level. The aim of this work was to establish a capillary action staining method for localization of intracellular antigens, using colloidal gold probes.Post-embedding capillary action immunocytochemistry was used to detect maternal IgG in the small intestine of newborn suckling piglets. Pieces of the jejunum of newborn piglets suckled for 12 h were fixed and embedded into LR White resin. Sections on nickel grids were secured on a capillary action glass slide (100 μm wide capillary gap, Bio-Tek Solutions, Santa Barbara CA, distributed by CMS, Houston, TX) by double sided adhesive tape. Immunolabeling was performed by applying reagents over the grids using capillary action and removing reagents by blotting on filter paper. Reagents for capillary action staining were from Biomeda (Foster City, CA). The following steps were performed: 1) wet the surface of the sections with automation buffer twice, 5 min each; 2) block non-specific binding sites with tissue conditioner, 10 min; 3) apply first antibody (affinity-purified rabbit anti-porcine IgG, Sigma Chem. Co., St. Louis, MO), diluted in probe diluent, 1 hour; 4) wash with automation buffer three times, 5 min each; 5) apply gold probe (goat anti-rabbit IgG conjugated to 10 nm colloidal gold, Zymed Laboratories, South San Francisco, CA) diluted in probe diluent, 30 min; 6) wash with automation buffer three times, 5 min each; 7) post-fix with 5% glutaraldehyde in PBS for 10 min; 8) wash with PBS twice, 5 min each; 9) contrast with 1% OSO4 in PBS for 15 min; 10) wash with PBS followed by distilled water for5 min each; 11) stain with 2% uranyl acetate for 10 min; 12) stain with lead citrate for 2 min; 13) wash with distilled water three times, 1 min each. The glass slides were separated, and the grids were air-dried, then removed from the adhesive tape. The following controls were used to ensure the specificity of labeling: i) omission of the first antibody; ii) normal rabbit IgG in lieu of first antibody; iii) rabbit anti-porcine IgG absorbed with porcine IgG.


2011 ◽  
Vol 20 (1) ◽  
pp. 17-18 ◽  
Author(s):  
Lateef McLeod

Abstract Individuals with significant communication challenges need to communicate across many different venues. The author, from the perspective of an individual who uses AAC, discusses the strengths and weaknesses of both traditional AAC technologies and new mobile AAC technologies. He describes how access to AAC has allowed him to fulfill his dreams as a presenter and writer. He successfully manages a blog in San Francisco, writes grants, and has published his first book of poetry. Not one AAC device fits all of his communication needs; however, access to mobile technology tools has increased his flexibility across environments and given him another successful tool for communication.


2005 ◽  
Vol 173 (4S) ◽  
pp. 34-34
Author(s):  
Viraj A. Master ◽  
Jennifer Young ◽  
Jack W. McAninch

Sign in / Sign up

Export Citation Format

Share Document