Time-Frequency-Based Data-Driven Structural Diagnosis and Damage Detection for Cable-Stayed Bridges

2018 ◽  
Vol 23 (6) ◽  
pp. 04018033 ◽  
Author(s):  
Hong Pan ◽  
Mohsen Azimi ◽  
Fei Yan ◽  
Zhibin Lin
Author(s):  
Wiesław J Staszewski ◽  
Amy N Robertson

Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time–frequency and the time–scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection.


2011 ◽  
Author(s):  
Yingtao Liu ◽  
Masoud Yekani Fard ◽  
Seung B. Kim ◽  
Aditi Chattopadhyay ◽  
Derek Doyle

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 452
Author(s):  
Qun Yang ◽  
Dejian Shen

Natural hazards have caused damages to structures and economic losses worldwide. Post-hazard responses require accurate and fast damage detection and assessment. In many studies, the development of data-driven damage detection within the research community of structural health monitoring has emerged due to the advances in deep learning models. Most data-driven models for damage detection focus on classifying different damage states and hence damage states cannot be effectively quantified. To address such a deficiency in data-driven damage detection, we propose a sequence-to-sequence (Seq2Seq) model to quantify a probability of damage. The model was trained to learn damage representations with only undamaged signals and then quantify the probability of damage by feeding damaged signals into models. We tested the validity of our proposed Seq2Seq model with a signal dataset which was collected from a two-story timber building subjected to shake table tests. Our results show that our Seq2Seq model has a strong capability of distinguishing damage representations and quantifying the probability of damage in terms of highlighting the regions of interest.


2021 ◽  
pp. 1-1
Author(s):  
Lulu Guo ◽  
Jinan Zhang ◽  
Jin Ye ◽  
Stephen James Coshatt ◽  
Wenzhan Song

2019 ◽  
Vol 870 ◽  
pp. 988-1036 ◽  
Author(s):  
M. A. Mendez ◽  
M. Balabane ◽  
J.-M. Buchlin

Data-driven decompositions are becoming essential tools in fluid dynamics, allowing for tracking the evolution of coherent patterns in large datasets, and for constructing low-order models of complex phenomena. In this work, we analyse the main limits of two popular decompositions, namely the proper orthogonal decomposition (POD) and the dynamic mode decomposition (DMD), and we propose a novel decomposition which allows for enhanced feature detection capabilities. This novel decomposition is referred to as multi-scale proper orthogonal decomposition (mPOD) and combines multi-resolution analysis (MRA) with a standard POD. Using MRA, the mPOD splits the correlation matrix into the contribution of different scales, retaining non-overlapping portions of the correlation spectra; using the standard POD, the mPOD extracts the optimal basis from each scale. After introducing a matrix factorization framework for data-driven decompositions, the MRA is formulated via one- and two-dimensional filter banks for the dataset and the correlation matrix respectively. The validation of the mPOD, and a comparison with the discrete Fourier transform (DFT), DMD and POD are provided in three test cases. These include a synthetic test case, a numerical simulation of a nonlinear advection–diffusion problem and an experimental dataset obtained by the time-resolved particle image velocimetry (TR-PIV) of an impinging gas jet. For each of these examples, the decompositions are compared in terms of convergence, feature detection capabilities and time–frequency localization.


2015 ◽  
Vol 62 (10) ◽  
pp. 6616-6626 ◽  
Author(s):  
Timothee Gerber ◽  
Nadine Martin ◽  
Corinne Mailhes

Sign in / Sign up

Export Citation Format

Share Document