Performance of Corroded Reinforced-Concrete Beams in Flexure Strengthened Using Different Basalt Fiber Textile-Reinforced Mortar Schemes

2020 ◽  
Vol 24 (6) ◽  
pp. 04020061
Author(s):  
Silas Oluwadahunsi ◽  
Charles K. S. Moy
2011 ◽  
Vol 243-249 ◽  
pp. 1058-1061
Author(s):  
Jun Wang ◽  
Huan Jun Ye ◽  
Zhi Wei Sun ◽  
Wei Chen

In order to research the influence of basalt fiber on the crack and deflection of the reinforced concrete beams, four basalt fiber reinforced concrete beams with the key parameters of length which were 12mm and 30mm and volume ratio which were 0.1% and 0.2% were designed and made. The test data was obtained through the bending experiment and the comparison with the common reinforced concrete beam. The result shows that it is obvious to control the crack and deflection of the test beams with the increasing of basalt fiber characteristic parameters. The calculation method of the maximum crack width of the basalt fiber reinforced concrete beams were presented based on the method of common concrete beam, which can provide the theoretical basis for the engineering practice.


2014 ◽  
Vol 584-586 ◽  
pp. 899-903
Author(s):  
Wei Chen ◽  
Xiang Peng Li ◽  
Ting Ting Chen ◽  
Xiao Yang Wang ◽  
Chao Chao Ma

In order to research the influence of the shear capacity of reinforced concrete beam with the incorporation of basalt fiber, four basalt fiber reinforced concrete beams with parameters of length and volume ratio were designed and made. The fiber lengths were 12mm and 30mm, and the volume ratios were 1‰ and 2‰. The test data of basalt fiber reinforced concrete was obtained through the shear experiments and comparison with the common reinforced concrete beam. The results of the experiment show that the cracking load of the basalt fiber reinforced concrete beam increase obviously with the growing of fiber characteristic parameters, and effectively reduce the diagonal crack width.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2110
Author(s):  
Hakem Alkhraisha ◽  
Haya Mhanna ◽  
Noor Tello ◽  
Farid Abed

The main objective of this study was to investigate experimentally and numerically the behavior of basalt fiber-reinforced polymer (BFRP) reinforcement exposed to a combination of ultraviolet rays, humidity, and rain. Specifically, the effects of the previously stated harsh exposure on the serviceability performance and flexural capacity of BFRP reinforced concrete beams was examined. Holding the exposure parameter constant, the study also evaluated the effects of reinforcement ratio and beam detailing on the flexural capacity and the bond-dependent coefficient (kb) of the beams. Seven beams were cast and tested, four of which were reinforced with exposed BFRP bars, two were reinforced with unexposed BFRP bars, and one specimen was cast and reinforced with steel bars to serve as a benchmark specimen. The results indicate that the kb factor was averaged to be 0.61 for all the beams. Test results also indicate that increasing the reinforcement ratio did not result in a directly proportional increase in the moment capacity. The period of exposure did not cause any significant impact on the behavior of the over-reinforced beams. Thus, a finite element model was created to simulate the impact of exposure on the behavior of under-reinforced BFRP reinforced concrete beams.


2012 ◽  
Vol 446-449 ◽  
pp. 2941-2944 ◽  
Author(s):  
Hua Nan He ◽  
Wei Dong

In practical concrete structures, once reinforced concrete beams serve in case of over cracking or are even damaged due to sudden overloading, it is necessary to repair or strengthened the damaged members for purpose of restoring the structural capacities and keeping the structures working well. At present FRP strengthening technique is one of the most accepted methods available in civil engineering. This paper particularly presents a new FRP material,basal fiber, which is applied to strengthen flexural behaviors of reinforced concrete beams suffering from different amplitudes of cracking damage. Herein, total 4 reinforced concrete beams were tested including one reference beam and three beams strengthened with basalt fiber polymer sheets. The three strengthened beams were preloaded to an expected load and then strengthen by basalt fibers under loading. The test parameters are involved in different pre-loads and layers of basalt fiber sheets. During test some flexural behaviors were obtained in terms of variation of strain in concrete, steel bar and basalt fiber sheet, flexural deflection, collapse loads and the failure modes as well as cracking properties of R.C beams strengthened with basalt fiber sheets. The results of test indicated that flexural behaviors of the beams strengthened under loading with basalt fiber polymer could be improved in different degree with varied initial flexural moment and numbers of basalt fiber.


Sign in / Sign up

Export Citation Format

Share Document