FRCM Strengthening of Corrosion-Damaged RC Beams Subjected to Monotonic and Cyclic Loading

Author(s):  
John Bressan ◽  
Faouzi Ghrib ◽  
Amr El Ragaby
Keyword(s):  
2019 ◽  
Vol 4 (2) ◽  
pp. 16
Author(s):  
Eljufout ◽  
Toutanji ◽  
Al-Qaralleh

Several standard fatigue testing methods are used to determine the fatigue stress-life prediction model (S-N curve) and the endurance limit of Reinforced Concrete (RC) beams, including the application of constant cyclic tension-tension loads at different stress or strain ranges. The standard fatigue testing methods are time-consuming and expensive to perform, as a large number of specimens is needed to obtain valid results. The purpose of this paper is to examine a fatigue stress-life predication model of RC beams that are developed with an accelerated fatigue approach. This approach is based on the hypothesis of linear accumulative damage of the Palmgren–Miner rule, whereby the applied cyclic load range is linearly increased with respect to the number of cycles until the specimen fails. A three-dimensional RC beam was modeled and validated using ANSYS software. Numerical simulations were performed for the RC beam under linearly increased cyclic loading with different initial loading conditions. A fatigue stress-life model was developed that was based on the analyzed data of three specimens. The accelerated fatigue approach has a higher rate of damage accumulations than the standard testing approach. All of the analyzed specimens failed due to an unstable cracking of concrete. The developed fatigue stress-life model fits the upper 95% prediction band of RC beams that were tested under constant amplitude cyclic loading.


2013 ◽  
Vol 47 (3) ◽  
pp. 383-396 ◽  
Author(s):  
Ana Paula Rodrigues Vaz ◽  
Ibrahim Abd El Malik Shehata ◽  
Lidia da Conceição Domingues Shehata ◽  
Ronaldo Barros Gomes
Keyword(s):  

2020 ◽  
Vol 47 (6) ◽  
pp. 704-717 ◽  
Author(s):  
Shervin K. Ghomi ◽  
Ehab El-Salakawy

Although structures made of concrete reinforced with fiber-reinforced polymers (FRP) have shown promising performance under gravity loads, their performance under cyclic loading is still one of the main concerns. Although the linear nature of FRP reinforcement could be advantageous in terms of limiting the residual damage after an earthquake event, it lowers the energy dissipation of the structure, which can compromise its seismic performance. In this research, adding steel plates at selected locations in moment-resisting frames is proposed as a solution to improve seismic performance of FRP-reinforced concrete (FRP-RC) structures. Three full-scale cantilever beams, one steel-RC, one FRP-RC, and one FRP-RC with proposed steel plates, were constructed and tested under reversed cyclic loading. The results indicated that the proposed mechanism effectively improves the seismic performance of FRP-RC beams by increasing their initial stiffness and energy dissipation. Moreover, a computer simulation, using the moment–curvature determination process, was conducted to calculate bending moment capacity of FRP-RC beams with steel plates.


2019 ◽  
Vol 20 (4) ◽  
pp. 1292-1306 ◽  
Author(s):  
Helisa Muhaj ◽  
Carla Marchão ◽  
Válter Lúcio ◽  
Rita Gião

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ting-jin Liu ◽  
Si-wei Chen ◽  
Zi-hang Feng ◽  
Hong-yuan Liu

This paper investigates the influence of multiple transverse web openings on the flexural behaviour of underground metro station reinforced concrete (RC) beams. This problem is outlined with an actual underground engineering project, in which the web opening used in the RC beams violates the current specifications. A total of five beams with different numbers of web openings are fabricated and tested under static and cyclic loading conditions, thereby simulating actual operations in unfavourable conditions. The results suggest that the existence of the openings decreases the loadbearing capacity, ductility, stiffness, and energy dissipation ability of the RC beams. Moreover, the results show that the corners of the openings are the weakest parts of the beams. However, additional reinforcements around the openings can partially mitigate the impact of the openings on the loadbearing and seismic performance of the RC beams. The laboratory experiments presented herein not only provide guidelines for the use of RC beams with web openings in actual engineering projects, especially underground projects where RC beams with web openings have seldom been investigated, but also shed light on improving the related design specifications.


2017 ◽  
Vol 2017 ◽  
pp. 1-15
Author(s):  
Sen Pang ◽  
Bo Diao ◽  
Yinghua Ye ◽  
Shuxin Chen ◽  
Xin Wang

An experimental study was conducted to investigate the impact of cyclic loading on the mechanical performance and chloride diffusivity of RC beams exposed to seawater wet-dry cycles. To induce initial damage to RC beam specimen, cyclic loading controlled by max load and cycles was applied. Then beam specimens underwent 240 wet-dry cycles of seawater. Results show that the chloride content increased as max load and cycle increased. The chloride content at steel surface increased approximatively linearly as average crack width increased. Moreover, the max load had more influence on chloride content at steel surface than cycle. The difference of average chloride diffusion coefficient between tension and compression concrete was little at uncracked position. Average chloride diffusion coefficient increased as crack width increased when crack width was less than 0.11 mm whereas the increasing tendency was weak when crack width exceeded 0.11 mm. The residual yield load and ultimate load of RC beams decreased as max load and cycle increased. Based on univariate analysis of variance, the max load had more adverse effect on yield load and ultimate load than cycle.


Sign in / Sign up

Export Citation Format

Share Document