Dynamic Behavior of Masonry Arch Bridge under High-Speed Train Loading: Veresk Bridge Case Study

2018 ◽  
Vol 32 (3) ◽  
pp. 04018016 ◽  
Author(s):  
R. Rafiee-Dehkharghani ◽  
S. Ghyasvand ◽  
P. Sahebalzamani
2015 ◽  
Vol 21 (4-6) ◽  
pp. 107-117
Author(s):  
S. K. Elwan

Abstract This research outlines a case study for the structural rehabilitation of a historic masonry arch bridge. The major part of the railway bridge was destroyed due to high flood. The remaining parts were evaluated from structural point of view. A detailed investigation for the historic and current state of the bridge was performed. A precise description for the structural system, main elements, method of construction, materials used, and internal component was done. Also, 3D finite element analysis was conducted for the proposed rehabilitated bridge in order to identify the level of internal stresses in different structural components of the arch bridge under the effect of dead loads, live loads, wind loads, seismic loads, water flow rate, and temperature changes. The results of the finite element modeling together with the structural studies and investigations were used to develop structural guidelines for the rehabilitation project taking into account the proposed new usage as a historic walkway and the hydrological requirements as a structure over flood flow channel.


2013 ◽  
Vol 405-408 ◽  
pp. 1606-1610
Author(s):  
Zohreh Zahiri ◽  
Dariush Heydari Beni

Masonry arch bridges with unequal spans are outstanding kinds of masonry bridges which are widespread in historic countries spatially in Iran. The differences in dimension of arches which mostly lead to formation of curve shaped decks in such bridges, brings a particular architecture for masonry arch bridge. However the elements which bring different lengths and heights for spans have not yet been studied. In this research by geometrical and structural survey on Khan Bridge, a kind of multi unequal span bridge in south west of Iran, it is demonstrated that especial conditions of the case lead to formation of its architecture. It is illustrated that shape of river bed, hydraulic and geotectonic factors and structural stability, are of paramount importance in terms of featuring the architecture of multi unequal span bridges with curve shaped deck.


2019 ◽  
Vol 1 (1) ◽  
pp. 5-11
Author(s):  
Emre Alpaslan

Experimental investigations of large and complex structural systems can be carried out by reduced-scale models in terms of convenience, time-saving and economical. This can be applied to different fields of study such as vibration, impact and explosion problems in structural engineering and allows reliable analysis to understand the static and dynamic behavior of real structures called a prototype. This study aims that a 1/3 reduced-scale model is created in the laboratory environment considering similitude requirements by selecting a single span historical masonry arch bridge as a prototype structure. For this purpose, the Operational Modal Analysis (OMA) Technique is utilized for experimental study to determine modal parameters of the prototype and model bridges. The similarity of the dynamic behavior of the reduced-scale bridge model and prototype are investigated. The analysis of the similarity in the dynamic behavior of the prototype and model bridge consists of comparing the natural frequencies and mode shapes by utilizing the modal assurance criterion (MAC) corresponding to the translational, bending and torsional modes. As a result of the study, it is concluded that the dynamic behavior of the reduced-scale bridge model is similar to the dynamic behavior of the prototype bridge.


2017 ◽  
Vol 24 (4) ◽  
pp. 1834-1842 ◽  
Author(s):  
Sh. Ataei ◽  
A. Miri ◽  
M. Tajalli

1995 ◽  
Vol 28 (6) ◽  
pp. 377-386 ◽  
Author(s):  
D.M. Armstrong ◽  
A. Sibbald ◽  
C.A. Fairfield ◽  
M.C. Forde

Author(s):  
Andrea Benedetti ◽  
Mirco Tarozzi ◽  
Giacomo Pignagnoli ◽  
Claudia Martinelli

Sign in / Sign up

Export Citation Format

Share Document