Performance Assessment of a High-Speed Railway Bridge through Operational Modal Analysis

2021 ◽  
Vol 35 (6) ◽  
pp. 04021091
Author(s):  
Xiao-Mei Yang ◽  
Ting-Hua Yi ◽  
Chun-Xu Qu ◽  
Hong-Nan Li ◽  
Hua Liu
Author(s):  
Xiao-Mei Yang ◽  
Chun-Xu Qu ◽  
Ting-Hua Yi ◽  
Hong-Nan Li ◽  
Hua Liu

For high-speed railway bridges in operation, it is necessary to reveal the coupling dynamic performance of train–bridge systems in order to avoid extreme vibrations, which are not conducive to bridge safety. With the opening of long-span heavy-haul and complex-type bridges to traffic, the train–bridge interaction can hardly be explained by a mature and unified theory. Notably, field testing and monitoring analysis have become popular in tracking the dynamic performance of train–bridge systems. The vibration of railway bridges depends on the train-track configuration and the inherent characteristics of bridges. The inherent characteristics of bridges, which are reflected by the modal parameters, are extracted via operational modal analysis in this paper. In addition, the modal characteristics of bridges while the train is passing through are also investigated to explain the coupling dynamic effect with the help of the train configuration. Considering that the measured vibration responses are seriously polluted by non-white noise or excitation, the variational mode decomposition (VMD) technique is developed to extract the state-driven vibrations for modal analysis. Since VMD is a univariate technique that hardly ensures that the weak component can be obtained from each measuring channel, the multi-channel variational mode decomposition (MVDM) technique is extended in this paper. The field monitoring data of a high-speed railway bridge are taken for modal identification and vibration analysis. The results show that the weak structural modes can be tracked, even though the forced vibrations due to the passage of regularly spaced axles are dominant. In addition, the dynamic effects in train-induced vertical vibrations of bridges are closely related to the train speed, heavy axle loads and the span length.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


2016 ◽  
Vol 10 (4) ◽  
pp. 488-498 ◽  
Author(s):  
Xin Liang ◽  
Qian-gong Cheng ◽  
Jiu-jiang Wu ◽  
Jian-ming Chen

2014 ◽  
Vol 102 (35) ◽  
pp. 601-608
Author(s):  
Zhe Liu ◽  
Helin Fu ◽  
Liang Li ◽  
Yangshao Liu

2013 ◽  
Vol 838-841 ◽  
pp. 1126-1129
Author(s):  
Zhao Lan Wei ◽  
Guo Jun Liu ◽  
Zu Yin Zou

Each related index was compared in three specifications, including Fundamental code for design on railway bridge and culvert, Code for rating existing railway bridges, and Code for design of high speed railway. The reasons of the difference existed in indexes was revealed, especially between high speed railway bridge and normal speed railway bridge.


Sign in / Sign up

Export Citation Format

Share Document