Comparative Study ofEnterobacter aerogenesand Mixed-Culture Bacteria for Acrylamide Biodegradation in Sequencing Batch Reactor Wastewater-Treatment Systems

2018 ◽  
Vol 144 (3) ◽  
pp. 04017112 ◽  
Author(s):  
Siriprapha Jangkorn ◽  
Jittima Charoenpanich ◽  
Tongchai Sriwiriyarat
RSC Advances ◽  
2018 ◽  
Vol 8 (61) ◽  
pp. 34911-34920
Author(s):  
Romsan Madmanang ◽  
Zhen He ◽  
Tongchai Sriwiriyarat

Acute effects of acrylamide and its biodegradation products on microbes from SBR wastewater treatment systems were revealed by respirometric activities.


2018 ◽  
Vol 16 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Ensiyeh Taheri ◽  
Mohammad Mehdi Amin ◽  
Ali Fatehizadeh ◽  
Hamidreza Pourzamani ◽  
Bijan Bina ◽  
...  

Vestnik MGSU ◽  
2019 ◽  
pp. 589-602 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena S. Gogina

Introduction. Vietnamese urban municipal wastewater treatment plants are mainly of aeration-type facilities. Nowadays, an aeration-type plant, the Sequencing Batch Reactor (SBR), is widely applied and possesses a number of advantages over traditional systems with suspended activated sludge. Advantages of the SBR are mainly concluded in simplicity of operation, occupied area and cost. There is a number of problems at the wastewater treatment plants; they are connected with supplying only a half of wastewater design amount for the treatment as well as with quality of the purified water that must satisfy requirements of the Vietnamese discharge standard, the Standard A. Therefore, reconstruction and modification of the SBR is the major challenger to ensure the sustained development of large Vietnamese cities and maintenance of ecological balance. Materials and methods. To enhance the efficiency of wastewater purification in the SBR, the experiments were set on reactor reconstruction and modification by two directions: (1) Technological method, i.e. applying the Biochip 25 biocarrier, and (2) Operation method, i.e. adding the anoxic phase in reactor operation cycle. Laboratory tests were conducted for each of the directions, including comparison of a typical reactor with the modified one. Results. The study resulted in obtaining an optimal amount of the BioChip biocarrier material (10 to 20 %) that increased efficiency of wastewater purification by 10 to 20 %. In addition to this, when creating an anoxic phase of the operation cycle, efficiency of nitrogen removal increased by 20 %. When the denitrification occurs under the anoxic conditions, it contributes to stabilization of ammonium nitrogen removal for daily nitrogen loading in reactor of 0.3 to 0.8 TKN kg/sludge kg. Conclusions. The suggested technology provides the quality of treated water corresponding with the Vietnamese Standard A requirements. At the present, it is planned to proceed with the experiment on the base of Vietnamese semi-industrial plant for research and appraisal of the SBR reconstruction and modification method. Acknowledgements. The authors are grateful to AKVA Control company in Samara for granted biocarrier Mutag BioChip 25 and to Associate Professor Tran Van Quang and his students, Nguyen Ngoc Phuong and Truong Quoc Dai, of Environment Protect Research Center, Danang University for support of the experiment.


2019 ◽  
Vol 38 (3) ◽  
pp. 243
Author(s):  
Happy Mulyani ◽  
Gregorius Prima Indra Budianto ◽  
Margono Margono ◽  
Mujtahid Kaavessina

Industrial wastewater treatment using Sequencing Batch Reactor (SBR) can improve effluent quality at lower cost than that obtained by other biological treatment methods. Further optimization is still required to enhance effluent quality until it meets standard quality and to reduce the operating cost of treatment of high strength organic wastewater. The purpose of this research was to determine the effect of pretreatment (pH adjustment and prechlorination) and aeration time on effluent quality and COD removal rate in tapioca wastewater treatment using SBR. Pretreatment was done by (1) adjustment of tapioca wastewater pH to control (4.92), 7, and 8, and (2) tapioca wastewater prechlorination at pH 8 during hour using calcium hypochlorite in variation dosages 0, 2, 4, 6 mg/L Cl2, SBR operation was conducted according to following steps: (1) Filling of pre-treated wastewater into a bioreactor during 1 hour, and (2) aeration of the mixture of tapioca wastewater and activated sludge during 8 hours. Effluent sample was collected at every 2-hours aeration for COD analysis. COD removal rate mathematical formula was got by first deriving the best fit function between aeration time and COD. Optimum aeration time resulting in no COD removal rate. The value of COD effluent and its removal rate in optimum aeration time was used to determine the recommended of operation condition of pretreatment. Research result shows that chosen pH operation condition is pH 8. Prechorination can make effluent quality which meets standard quality and highest COD removal rate. The chosen Cl2 dosage is 6 mg/L.


Sign in / Sign up

Export Citation Format

Share Document