Buckling Behavior of Sinusoidal Web for Composite Wood I-Joist with Elastically Restrained Loaded Edges under Compression

2013 ◽  
Vol 139 (8) ◽  
pp. 1065-1072 ◽  
Author(s):  
An Chen ◽  
Julio F. Davalos ◽  
Pengcheng Jiao ◽  
Bradley McGraw
2020 ◽  
Vol 23 (10) ◽  
pp. 2204-2219
Author(s):  
Jun Wan ◽  
Jian Cai ◽  
Yue-Ling Long ◽  
Qing-Jun Chen

Based on the energy method, this article presents a theoretical study on the elastic local buckling of steel plates in rectangular concrete-filled steel tubular columns with binding bars subjected to eccentric compression. The formulas for elastic local buckling strength of the steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars are derived, assuming that the loaded edges are clamped and the unloaded edges of the steel plate are elastically restrained against rotation. Then, the experimental results are compared with these formulas, which exhibits good agreement. Subsequently, the formulas are used to study the elastic local buckling behavior of steel plates in rectangular concrete-filled steel tubular columns with binding bars under eccentric compression. It is found that the local buckling stress of steel plates in eccentrically loaded rectangular concrete-filled steel tubular columns with binding bars is significantly influenced by the stress gradient coefficient, width-to-thickness ratio, and the longitudinal spacing of binding bars. With the decrease of width–thickness ratios or the longitudinal spacing of binding bars or with the increase of the stress gradient coefficient, the local buckling stress increases. Furthermore, the influence of the longitudinal spacing of binding bar is more significant than the stress gradient coefficients. Finally, appropriate limitation for depth-to-thickness ratios ( D/ t), width-to-thickness ratios ( B/ t), and binding bar longitudinal spacing at various stress gradient coefficients ( α0) corresponding to different cross-sectional aspect ratios ( D/ B) are suggested for the design of rectangular concrete-filled steel tubular columns with binding bars under eccentric compression.


1983 ◽  
Vol 11 (1) ◽  
pp. 3-19
Author(s):  
T. Akasaka ◽  
S. Yamazaki ◽  
K. Asano

Abstract The buckled wave length and the critical in-plane bending moment of laminated long composite strips of cord-reinforced rubber sheets on an elastic foundation is analyzed by Galerkin's method, with consideration of interlaminar shear deformation. An approximate formula for the wave length is given in terms of cord angle, elastic moduli of the constituent rubber and steel cord, and several structural dimensions. The calculated wave length for a 165SR13 automobile tire with steel breakers (belts) was very close to experimental results. An additional study was then conducted on the post-buckling behavior of a laminated biased composite beam on an elastic foundation. This beam is subjected to axial compression. The calculated relationship between the buckled wave rise and the compressive membrane force also agreed well with experimental results.


Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1923-1935
Author(s):  
Ashish P. Khatri ◽  
Sai Ram Katikala ◽  
Vijaya Krishna Kotapati

Sign in / Sign up

Export Citation Format

Share Document