Seismic Active Earth Pressure for Soils with Tension Cracks

2019 ◽  
Vol 19 (6) ◽  
pp. 06019009 ◽  
Author(s):  
X. L. Yang ◽  
Sheng Zhang
2011 ◽  
Vol 368-373 ◽  
pp. 2932-2938
Author(s):  
Kui Hua Wang ◽  
Deng Hui Wu ◽  
Shao Jun Ma ◽  
Wen Bing Wu

By means of pseudo-dynamic theory, a new calculating method is presented to calculate the pseudo-dynamic seismic active earth pressure behind rigid retaining wall. Considering time and phase difference within the backfills, the horizontal slices is used to analyze the distribution of seismic active force behind retaining wall in more realistic manner. Under the assumption that the soil backfills are rigid body, the equations derived in this paper can be degenerated to Mononobe-Okabe equations. Through numerical analysis, it is shown that the values of seismic active force obtained from present study are smaller than those obtained from Mononobe-Okabe theory and the distribution of seismic force along the depth of the wall is nonlinear. It is also found that the action point of the total seismic active earth pressure is higher than one third of the wall height, which is corresponding to previous experimental results.


2018 ◽  
Vol 9 (2) ◽  
pp. 6 ◽  
Author(s):  
A. Gupta ◽  
V. Yadav ◽  
V. A. Sawant ◽  
R. Agarwal

Design of retaining walls under seismic conditions is based on the calculation of seismic earth pressurebehind the wall. To calculate the seismic active earth pressure behind the vertical retaining wall, many researchers reportanalytical solutions using the pseudo-static approach for both cohesionless and cohesive soil backfill. Design charts havebeen presented for the calculation of seismic active earth pressure behind vertical retaining walls in the non-dimensionalform. For inclined retaining walls, the analytical solutions for the calculation of seismic active earth pressure as well as thedesign charts (in non-dimensional form) have been reported in few studies for c-ϕ soil backfill. One analytical solution forthe calculation of seismic active earth pressure behind inclined retaining walls by Shukla (2015) is used in the present studyto obtain the design charts in non-dimensional form. Different field parameters related with wall geometry, seismic loadings,tension cracks, soil backfill properties, surcharge and wall friction are used in the present analysis. The present study hasquantified the effect of negative and positive wall inclination as well as the effect of soil cohesion (c), angle of shearingresistance (ϕ), surcharge loading (q) and the horizontal and vertical seismic coefficient (kh and kv) on seismic active earthpressure with the help of design charts for c-ϕ soil backfill. The design charts presented here in non-dimensional form aresimple to use and can be implemented by field engineers for design of inclined retaining walls under seismic conditions. Theactive earth pressure coefficients for cohesionless soil backfill achieved from the present study are validated with studiesreported in the literature.


2021 ◽  
Author(s):  
Jun-feng Jiang ◽  
Qi-hua Zhao ◽  
Shuairun Zhu ◽  
Sheqin Peng ◽  
Yonghong Wu

Abstract A new approach is proposed to evaluate the non-limit active earth pressure in cohesive-frictional based on the horizontal slices method and limit equilibrium method. This approach takes into account the arching effect, displacement, average shear stress of the soil slice, rupture angle and tension cracks. The accuracy of the proposed method is demonstrated by comparing the experimental results and other theoretical methods. The comparison results show that the proposed approach is suitable for calculating the non-limit active earth pressure in cohesive-frictional soil and cohesionless soil. Additionally, the empirical formulations of the mobilized internal friction angle and soil-wall interface friction angle usually used to cohesionless soil are still applied to cohesive-frictional soil through comparison calculated results of other theoretical methods and finite element method. Some valid formulations of the rupture angle and tension cracks were derived considering the cohesion, wall height, and unit weight.


Sign in / Sign up

Export Citation Format

Share Document