Three-Dimensional Frequency-Domain Green’s Functions of a Finite Fluid-Saturated Soil Layer Underlain by Rigid Bedrock to Interior Loadings

Author(s):  
Shiping Zhang ◽  
Ronald Y. S. Pak ◽  
Junhui Zhang
2016 ◽  
Vol 2016 ◽  
pp. 1-22
Author(s):  
Inês Simões ◽  
António Tadeu ◽  
Nuno Simões

This paper presents a set of fully analytical solutions, together with explicit expressions, in the time and frequency domain for the heat conduction response of homogeneous unbounded and of bounded rectangular spaces (three-, two-, and one-dimensional spaces) subjected to point, line, and plane heat diffusion sources. Particular attention is given to the case of spatially sinusoidal, harmonic line sources. In the literature this problem is often referred to as the two-and-a-half-dimensionalfundamental solutionor 2.5D Green’s functions. These equations are very useful for formulating three-dimensional thermodynamic problems by means of integral transforms methods and/or boundary elements. The image source technique is used to build up different geometries such as half-spaces, corners, rectangular pipes, and parallelepiped boxes. The final expressions are verified here by applying the equations to problems for which the solution is known analytically in the time domain.


2003 ◽  
Vol 70 (2) ◽  
pp. 180-190 ◽  
Author(s):  
E. Pan

In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials with imperfect interface conditions are derived based on the extended Stroh formalism and the Mindlin’s superposition method. Four different interface models are considered: perfect-bond, smooth-bond, dislocation-like, and force-like. While the first one is for a perfect interface, other three models are for imperfect ones. By introducing certain modified eigenmatrices, it is shown that the bimaterial Green’s functions for the three imperfect interface conditions have mathematically similar concise expressions as those for the perfect-bond interface. That is, the physical-domain bimaterial Green’s functions can be obtained as a sum of a homogeneous full-space Green’s function in an explicit form and a complementary part in terms of simple line-integrals over [0,π] suitable for standard numerical integration. Furthermore, the corresponding two-dimensional bimaterial Green’s functions have been also derived analytically for the three imperfect interface conditions. Based on the bimaterial Green’s functions, the effects of different interface conditions on the displacement and stress fields are discussed. It is shown that only the complementary part of the solution contributes to the difference of the displacement and stress fields due to different interface conditions. Numerical examples are given for the Green’s functions in the bimaterials made of two anisotropic half-spaces. It is observed that different interface conditions can produce substantially different results for some Green’s stress components in the vicinity of the interface, which should be of great interest to the design of interface. Finally, we remark that these bimaterial Green’s functions can be implemented into the boundary integral formulation for the analysis of layered structures where imperfect bond may exist.


Geophysics ◽  
1975 ◽  
Vol 40 (2) ◽  
pp. 309-324 ◽  
Author(s):  
Gerald W. Hohmann

The induced polarization (IP) and electromagnetic (EM) responses of a three‐dimensional body in the earth can be calculated using an integral equation solution. The problem is formulated by replacing the body by a volume of polarization or scattering current. The integral equation is reduced to a matrix equation, which is solved numerically for the electric field in the body. Then the electric and magnetic fields outside the inhomogeneity can be found by integrating the appropriate dyadic Green’s functions over the scattering current. Because half‐space Green’s functions are used, it is only necessary to solve for scattering currents in the body—not throughout the earth. Numerical results for a number of practical cases show, for example, that for moderate conductivity contrasts the dipole‐dipole IP response of a body five units in strike length approximates that of a two‐dimensional body. Moving an IP line off the center of a body produces an effect similar to that of increasing the depth. IP response varies significantly with conductivity contrast; the peak response occurs at higher contrasts for two‐dimensional bodies than for bodies of limited length. Very conductive bodies can produce negative IP response due to EM induction. An electrically polarizable body produces a small magnetic field, so that it is possible to measure IP with a sensitive magnetometer. Calculations show that horizontal loop EM response is enhanced when the background resistivity in the earth is reduced, thus confirming scale model results.


Author(s):  
Priscila F. B. Sousa ◽  
Ana P. Fernandes ◽  
Vale´rio Luiz Borges ◽  
George S. Dulikravich ◽  
Gilmar Guimara˜es

This work presents a modified procedure to use the concept of dynamic observers based on Green’s functions to solve inverse problems. The original method can be divided in two distinct steps: i) obtaining a transfer function model GH and; ii) obtaining heat transfer functions GQ and GN and building an identification algorithm. The transfer function model, GH, is obtained from the equivalent dynamic systems theory using Green’s functions. The modification presented here proposes two different improvements in the original technique: i) A different method of obtaining the transfer function model, GH, using analytical functions instead of numerical procedures, and ii) Definition of a new concept of GH to allow the use of more than one response temperature. Obtaining the heat transfer functions represents an important role in the observer method and is crucial to allow the technique to be directly applied to two or three-dimensional heat conduction problems. The idea of defining the new GH function is to improve the robustness and stability of the algorithm. A new dynamic equivalent system for the thermal model is then defined in order to allow the use of two or more temperature measurements. Heat transfer function, GH can be obtained numerically or analytically using Green’s function method. The great advantage of deriving GH analytically is to simplify the procedure and minimize the estimative errors.


Sign in / Sign up

Export Citation Format

Share Document