Rainfall Infiltration and Water-Retention Characteristics of Rockfill Material

Author(s):  
Yongkang Wu ◽  
Yin Yin ◽  
Yanhui Ding ◽  
Bingyin Zhang ◽  
Xun Sun
Author(s):  
Vitalis Kibiwott Too ◽  
Christian Thine Omuto ◽  
Elijah Kipngetich Biamah ◽  
John Paul Obiero

2016 ◽  
Vol 9 ◽  
pp. 10007 ◽  
Author(s):  
Vasileios Mantikos ◽  
Steven Ackerley ◽  
Andrew Kirkham ◽  
Aikaterini Tsiampousi ◽  
David M.G. Taborda ◽  
...  

2014 ◽  
Vol 941-944 ◽  
pp. 952-955 ◽  
Author(s):  
Dao Yuan Wang ◽  
Deng Hua Yan ◽  
Xin Shan Song ◽  
Hao Wang

Adding biochar to agricultural soil has been suggested as an approach to enhance soil carbon sequestration. Biochar has also been used as a soil amendment to reduce nutrient leaching, reduce soil acidity and improve water holding capacity. Walnut shells and woody material are waste products of orchards that are cheap, carbon-rich and good feedstock for production of biochar. The effectiveness of biochar as an amendment varies considerably as a function of its feedstock, temperature during pyrolysis, the biochar dose to soil, and mechanical composition. Biochar was produced from pyrolysis of walnut shell at 900 °C and soft wood at 600 to 700 °C. We measured the effect of these different parameters in two types of agricultural soil in Jilin and Beijing, China, a silt clay loam and a sandy loam, on the soils’ particle size distribution and water retention characteristics. Biochars with two different doses were applied to each soil type. Soil field capacity and permanent wilting point were measured using a pressure plate extractor for each combination of biochar and soil type. The results show that the effect of biochar amendment on soil water retention characteristics depend primarily on soil particle size distribution and surface characteristics of biochar. High surface area biochar can help raise the water holding capacity of sandy soil.


2018 ◽  
Vol 2 ◽  
pp. 13-21
Author(s):  
Ryszard Oleszczuk ◽  
◽  
Ewelina Zając ◽  
Edyta Hewelke ◽  
Karolina Wawer ◽  
...  

Soil Research ◽  
1998 ◽  
Vol 36 (2) ◽  
pp. 317 ◽  
Author(s):  
V. Rasiah ◽  
L. A. G. Aylmore

It is known that field-scale variations in subsurface hydraulic characteristics are influenced, to a large extent, by soil properties. Limited information, however, exists on the sensitivity of hydraulic functions to field-scale variations in soil properties. The sensitivity of 4 soil water retention functions, θ(h), to variations in soil properties and changes in bulk density (ρ) across and within soils along a 500-m transect has been assessed in this study. The θ(h) functions compared are those of van Genuchten, Brooks and Corey, Campbell, and Gardner. Water retention characteristics for 7 soils, each packed to 2 relative ρ, were established for each function. The coefficient of determination, R 2 , for the best fit of water retention ranged from 0·79 to 0· 98 for the Gardner and Campbell functions, from 0· 92 to 0·99 for the Brooks and Corey function, and from 0·83 to 0·99 for the van Genuchten function. Simple linear regression analysis indicated the nonlinear slope parameters of the 4 functions were more strongly correlated with soil properties. However, only the van Genuchten slope parameters were sensitive to changes in ρ. No consistency existed between the sensitivity of the linear parameters of the 4 functions and soil properties, and none were sensitive to changes in ρ. Except for the a parameter in the van Genuchten function, all the parameters in this function can be predicted with satisfactory confidence from soil properties and ρ. The results indicate that, of the 4 functions assessed, the van Genuchten θ(h) function is the most sensitive to field-scale variations in soil properties along a transect in a landscape unit and to changes in ρ.


Sign in / Sign up

Export Citation Format

Share Document