scholarly journals Experimental Study of the Earth Pressure Distribution on Cylindrical Shafts

2011 ◽  
Vol 137 (11) ◽  
pp. 1121-1125 ◽  
Author(s):  
Tatiana Tobar ◽  
Mohamed A. Meguid
2013 ◽  
Vol 405-408 ◽  
pp. 1815-1819
Author(s):  
Wen Sheng Yu ◽  
Zhu Long Li ◽  
Xiao Ru Xie ◽  
Li Yuan Guo

To analyze the earth pressure of corrugated steel culvert under high fill embankment, a field test was taken and the change law was got with the filling height increasing, the force state when geotechnical grilles were laid on the top of corrugated steel culvert was compared to that of reinforced concrete slab culvert. Results show that the pressure on the top of corrugated steel culvert is smaller than that on the external in same level when test points are near to culvert, the values of test points above and below geotechnical grilles are close, and the pressure of corrugated steel culvert is smaller than that of reinforced concrete slab culvert when filling height is above 7.3 m. So analysis indicates corrugated steel culvert spreads the upper load better, the geotechnical grille can reduce the pressure effectively through earth pressure redistribution, and the mechanical property of corrugated steel culvert is better than reinforced concrete slab culvert under high fill embankment.


2021 ◽  
Vol 7 (1) ◽  
pp. 71-82
Author(s):  
Taku Muni ◽  
Dipika Devi ◽  
Sukumar Baishya

In the present study two-dimensional finite element analysis has been carried out on cantilever sheet pile wall using ABAQUS/Standard software to study the effect of different friction angles and its related parameters such as dilation angle, the interfacial friction coefficient between soil-wall on earth pressure distribution, and wall deformation. From the results obtained, it is found that there is a significant decrease in wall deformation with an increase in the angle of internal friction and its related parameters. The earth pressure results obtained from the finite element analysis shared a unique relationship with that of a conventional method. Both the results showed similar linear behavior up to a certain percentage of wall height and then changed drastically in lower portions of the wall. This trend of behavior is seen in both active as well as in passive earth pressure distribution for all the frictional angle. Hence, after comparing the differences that exist in the results for both methods, from the analysis a new relationship between the earth pressure coefficients from a conventional method and the finite element method has been developed for both active and passive earth pressure on either side of the sheet pile wall. This relationship so derived can be used to compute more reasonable earth pressure distributions for a sheet pile wall without carrying out a numerical analysis with a minimal time of computation. And also the earth pressure coefficient calculated from this governing equation can serve as a quick reference for any decision regarding the design of the sheet pile wall. Doi: 10.28991/cej-2021-03091638 Full Text: PDF


1992 ◽  
Vol 29 (1) ◽  
pp. 31-38
Author(s):  
P. Gaffran ◽  
D. C. Sego ◽  
A. E. Peterson

The performance of a 6 m high anchored steel sheet pile retaining wall, constructed to allow CN Rail to twin its main-line track, is presented. The instruments installed gave measurement of the load and its variation along the tieback anchors; the distribution of the strain along the height of the wall which allowed an earth-pressure distribution to be postulated; and the lateral deflection of the wall. The earth-pressure distributions, inferred from the field measurements, were adequately predicted using the Terzaghi and Peck recommendation coupled with the Boussinesq procedure to account for the train loads. The best-fit lateral pressure distributions were in turn used to calculate displacement profiles by modelling the wall as a beam. The results matched the measured profiles reasonably well, thus endorsing a simplified technique for predicting displacements of an anchored wall. Key words : retaining wall, tieback, earth-pressure distribution, wall deflection, railway.


2010 ◽  
Vol 168-170 ◽  
pp. 200-205
Author(s):  
Fei Song ◽  
Jian Min Zhang ◽  
Lu Yu Zhang

The evaluation of earth pressure is of vital importance for the design of various retaining walls and infrastructures. Experimental studies show that earth pressures are closely related to the mode and amount of wall displacement. In this paper, based on the reveal of the formation mechanism of earth pressures against rigid retaining wall with RTT mode, a new method is proposed to calculate the earth pressure distribution in such conditions. Finally, the effectiveness of the method is confirmed by the experimental results.


Sign in / Sign up

Export Citation Format

Share Document