Relative Roles of Time–Area Curve and Storage Coefficient on the Shape of Clark’s Instantaneous Unit Hydrograph: Analytical Approach

2021 ◽  
Vol 26 (3) ◽  
pp. 06021001
Author(s):  
Changhyun Jun ◽  
Chulsang Yoo
2015 ◽  
Vol 48 (2) ◽  
pp. 91-103
Author(s):  
Joo-Cheol Kim ◽  
◽  
Kwansue Jung ◽  
Dong Kug Jeong

1985 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
V. P. Singh ◽  
C. Corradini ◽  
F. Melone

The geomorphological instantaneous unit hydrograph (IUH) proposed by Gupta et al. (1980) was compared with the IUH derived by commonly used time-area and Nash methods. This comparison was performed by analyzing the effective rainfall-direct runoff relationship for four large basins in Central Italy ranging in area from 934 to 4,147 km2. The Nash method was found to be the most accurate of the three methods. The geomorphological method, with only one parameter estimated in advance from the observed data, was found to be little less accurate than the Nash method which has two parameters determined from observations. Furthermore, if the geomorphological and Nash methods employed the same information represented by basin lag, then they produced similar accuracy provided the other Nash parameter, expressed by the product of peak flow and time to peak, was empirically assessed within a wide range of values. It was concluded that it was more appropriate to use the geomorphological method for ungaged basins and the Nash method for gaged basins.


2018 ◽  
Vol 19 (2) ◽  
pp. 644-652
Author(s):  
Chulsang Yoo ◽  
Jiho Lee ◽  
Eunsaem Cho

Abstract This study theoretically evaluated the basin concentration time and storage coefficient with their empirical formulas available worldwide. The evaluation results were also validated in the application to major dam basins in Korea. The findings are summarized as follows. As a result of analytical analysis, the concentration time was found to be proportional to the main channel length under laminar flow conditions and to the square of it under turbulent flow conditions, but inversely proportional to the channel slope. It was also found that the storage coefficient and the concentration time are linearly but loosely related. Most empirical formulas for the concentration time concurred with the basic equation form, but just a few for the storage coefficient. Applications to major dam basins in Korea also showed that the concentration time agrees well with the result of theoretical analysis. However, the behavior of the storage coefficient varied much, basin by basin, indicating that additional factors may be needed to explain it.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3122
Author(s):  
Leonardo Primavera ◽  
Emilia Florio

The possibility to create a flood wave in a river network depends on the geometric properties of the river basin. Among the models that try to forecast the Instantaneous Unit Hydrograph (IUH) of rainfall precipitation, the so-called Multifractal Instantaneous Unit Hydrograph (MIUH) by De Bartolo et al. (2003) rather successfully connects the multifractal properties of the river basin to the observed IUH. Such properties can be assessed through different types of analysis (fixed-size algorithm, correlation integral, fixed-mass algorithm, sandbox algorithm, and so on). The fixed-mass algorithm is the one that produces the most precise estimate of the properties of the multifractal spectrum that are relevant for the MIUH model. However, a disadvantage of this method is that it requires very long computational times to produce the best possible results. In a previous work, we proposed a parallel version of the fixed-mass algorithm, which drastically reduced the computational times almost proportionally to the number of Central Processing Unit (CPU) cores available on the computational machine by using the Message Passing Interface (MPI), which is a standard for distributed memory clusters. In the present work, we further improved the code in order to include the use of the Open Multi-Processing (OpenMP) paradigm to facilitate the execution and improve the computational speed-up on single processor, multi-core workstations, which are much more common than multi-node clusters. Moreover, the assessment of the multifractal spectrum has also been improved through a direct computation method. Currently, to the best of our knowledge, this code represents the state-of-the-art for a fast evaluation of the multifractal properties of a river basin, and it opens up a new scenario for an effective flood forecast in reasonable computational times.


2021 ◽  
pp. 3921-3931
Author(s):  
Zahraa. M. Muhsin ◽  
Qusai .Y. Al-Kubaisi

The study area is located in the eastern part of the Diyala Governorate close to the Iraqi-Iranian border. This study was set to investigate the hydrogeological calculations of northeast of Qazaniyah wells where the groundwater moves in directions of from the northeastern parts towards the southwestern par, that is, the same direction of the topography and the same direction of the tendency of the layers t. The study‘s region is characterized by visible geological layers or those that can be penetrated to a reasonable depth by wells which are sedimentary rocks deposited in continental or semi-continental conditions in the bays. From the study of the hydraulic properties of the two hydrogeological and exemplary systems, the values of transmissivity, permeability and storage coefficient are ranged between 1.94- 5.73 m2/day, 1.02- 3.92 m/day and1.40 x 10-5- 2.62 x 10-4, respectively. While the estimated value of transmissivities, which are obtained from specific capacity, ranged between 6.27- 8.62 m2/day. This variance in the values indicates the broad differences in the values Lithology of aquifers, which seems to be influenced by the strength and the number of fractures and joints.


Sign in / Sign up

Export Citation Format

Share Document