scholarly journals Erratum for “Prediction of Overtopping Dike Failure: Sediment Transport and Dynamic Granular Bed Deformation Model” by Francisco Nicolás Cantero-Chinchilla, Oscar Castro-Orgaz, and Subhasish Dey

2020 ◽  
Vol 146 (8) ◽  
pp. 08220002
Author(s):  
Francisco Nicolás Cantero-Chinchilla ◽  
Oscar Castro-Orgaz ◽  
Subhasish Dey
2019 ◽  
Vol 145 (6) ◽  
pp. 04019021 ◽  
Author(s):  
Francisco Nicolás Cantero-Chinchilla ◽  
Oscar Castro-Orgaz ◽  
Subhasish Dey

2021 ◽  
Vol 9 ◽  
Author(s):  
Qingyuan Yang ◽  
Tonghuan Liu ◽  
Jingjing Zhai ◽  
Xiekang Wang

In 2018, a flash flood occurred in the Zhongdu river, which lies in Yibin, Sichuan province of China. The flood caused many casualties and significant damage to people living nearby. Due to the difficulty in predicting where and when flash floods will happen, it is nearly impossible to set up monitors in advance to detect the floods in detail. Field investigations are usually carried out to study the flood propagation and disaster-causing mechanism after the flood’s happening. The field studies take the relic left by the flash flood to deduce the peak level, peak discharge, bed erosion, etc. and further revel the mechanism between water and sediment transport during the flash flood This kind of relic-based study will generate bigger errors in regions with great bed deformation. In this study, we come up with numerical simulations to investigate the flash flood that happened in the Zhongdu river. The simulations are based on two-dimensional shallow water models coupled with sediment transport and bed deformation models. Based on the real water level and discharge profile measured by a hydrometric station nearby, the numerical simulation reproduced the flash flood in the valley. The results show the flood coverage, water level variation, and velocity distribution during the flood. The simulation offers great help in studying the damage-causing process. Furthermore, simulations without considering sediment transport are also carried out to study the impact of bed erosion and sedimentation. The study proved that, without considering bed deformation, the flood may be greatly underestimated, and the sediment lying in the valley has great impact on flood power.


2019 ◽  
Vol 145 (4) ◽  
pp. 04019009
Author(s):  
Leszek M. Kaczmarek ◽  
Jarosław Biegowski ◽  
Łukasz Sobczak

2021 ◽  
Author(s):  
Diwash Lal Maskey ◽  
Nils Ruther

<p>Floating units/booms are used to trap or guide floating debris in watercourses. In a relatively shallow depth, these floats could affect the velocity distribution, sediment transport and channel bed deformation.  A three-dimensional non-hydrostatic numerical modelling was performed in a 180 degree channel bend with floats to see the effects in flow distribution and bed deformation as a conceptual study. Different configurations of the floats were simulated. The results showed that the flow velocity increased and deposition decreased at the inner bank of the bend. Use of floating units could be studied to alter sediment deposition pattern and sediment transport phenomenon in watercourses.</p>


2012 ◽  
Vol 1 (33) ◽  
pp. 57 ◽  
Author(s):  
Ravindra Jayaratne ◽  
Yasufumi Takayama ◽  
Tomoya Shibayama

Study of beach morphological changes under storm conditions and its prediction capability are of paramount importance in coastal zone management. Seabed sediment is picked up violently in and outside the surf zone due to suspension mechanisms, therefore a considerable amount of sand is transported in coastal waters due to such mechanisms. For the construction of an accurate beach morphological model, it is necessary to elucidate the sediment suspension and to introduce it properly into the modelling of sediment transport. Jayaratne and Shibayama (2007) developed a complete set of explicit theoretical formulae to predict the time-averaged concentration on sandy beaches due to three suspension mechanisms: a) vortical motion over wave-generated sand ripples, b) from sheet flow, and c) turbulent motion under breaking waves. The present paper focuses on the development of a quasi-3D beach deformation model using the sediment concentration models of Jayaratne and Shibayama (2007), the bed load model of Watanabe (1982), the wave propagation model of Onaka et al. (1988), the nearshore current model of Philips (1977) and the undertow model of Okayasu et al. (1990) to predict the large-scale morphodynamics of sandy beaches. The predicted beach profiles and total sediment transport rates were compared with two sets of large-scale laboratory experimental data [Kajima et al. (1983); Kraus and Larson (1988)] and Seisho beach at Kanagawa Prefecture, Japan. It can be concluded that the present numerical model is capable of predicting sediment transport direction, on-offshore sand bar formation and the general trend of the beach profiles of large-scale erosive- and accretive-type sandy beaches to a satisfactory level.


2019 ◽  
Vol 17 (2) ◽  
pp. 73-84
Author(s):  
Amin Gharehbaghi ◽  
Birol Kaya ◽  
Gökmen Tayfur

Sign in / Sign up

Export Citation Format

Share Document