Triaxial Compressive Strength of Concrete Subjected to High Temperatures

2014 ◽  
Vol 26 (4) ◽  
pp. 705-712 ◽  
Author(s):  
Rabah Hammoud ◽  
Ammar Yahia ◽  
Rachid Boukhili
2018 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Belaribi Hassiba ◽  
Mellas Mekki ◽  
Rahmani Fraid

The paper analyses the effects of high temperatures on the concrete residual strength using ultrasonic velocity (UPV). An experimental investigation was conducted to study the relationship between UPV residual data and compressive strength of concrete with different mixture proportions, cubic specimens with water-cement ratio of 0.35. They were heated in an electric furnace at temperatures ranging from 200°C to 600°C. In this experiment a comparison was made between the four groups which include two types of fibers steel 0,19%, 0,25% and 0,5%, polypropylene: 0,05%, 0,11% 0,16 % by volume. Cube specimens were tested in order to determine ultrasonic velocity. The compressive strength was tested too. According to the results, relations were established between ultrasonic velocity in the specimens and the compressive strength at different temperature and the range of the velocity of the waves were also determined for this kind of concrete. Result of the test showed that UPV test can be successfully used in order to verify the consistency of structures damaged by fire.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wei Xia ◽  
Erlei Bai ◽  
Jinyu Xu ◽  
Gaojie Liu

To explore the mechanical properties of concrete under true triaxial static compressive load after sulfate attack, uniaxial static compression test and true triaxial static compression test at four stress ratios were carried out on concrete specimens immersed in 15% sulfate solution for 0–120 days by the integrated true triaxial static and dynamic load testing system, and the variation of performance indicators such as the strength and deformation of concrete under the coupling action of sulfate attack and complex stress state was analyzed. The results show that the uniaxial compressive strength of concrete increases at the beginning and then decreases with the increase of sulfate attack time and reaches the peak on the 30th day, with an increase rate of 16.57%; the strength of concrete under triaxial compression increases significantly, and the maximum triaxial compressive strength is 3.18 times of uniaxial compressive strength under the combination of 0-day sulfate attack and 0.2 : 0.8 stress ratio; and the deterioration of concrete under sulfate attack is more prominent at high confining pressure, and as the sulfate attack worsens, the sensitivity of triaxial compressive strength of concrete to lateral compressive stress is reduced. In conclusion, triaxial compression can significantly enhance the ductility of concrete by playing a role in restraining the deformation and cracking of concrete after sulfate attack.


2020 ◽  
Vol 309 ◽  
pp. 62-67
Author(s):  
Kateřina Horníková ◽  
Marek Foglar

This paper presents the results of experimental program focused on change of compressive strength of concrete exposed to elevated temperature. The change of compressive strength was studied for several types of concrete with different properties (common concrete, air-entrained concrete, concrete with polypropylene fibres, high performance concrete with steel fibres and concrete with basalt fibres). The samples were exposed to high temperatures up to 1000 0C at, the compressive strength was measured at the elevated temperature. This paper presents results of this experiment and comparison of experimental results with available data from literature and valid Eurocodes.


Sign in / Sign up

Export Citation Format

Share Document