schmidt rebound hammer
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 12)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Vol 12 (2) ◽  
pp. 39
Author(s):  
Tuba Bahtli ◽  
Nesibe Sevde Ozbay

Studies in the literature show that the physical and mechanical properties of concrete could be improved by the incorporation of different kinds of industrial waste, including waste tire rubber and tire steel. Recycling of waste is important for economic gain and to curb environmental problems. In this study, finely ground CuAl10Ni bronze is used to improve the physical and mechanical properties, and freeze-thaw resistances of C30 concrete. The density, cold crushing strength, 3-point bending strength, elastic modulus, toughness, and freeze-thaw resistances of concrete are determined. In addition, the Schmidt Rebound Hammer (SRH) and the ultrasonic pulse velocity (UPV) tests, which are non-destructive test methods, are applied. SEM/EDX analyses are also carried out. It is noted that a more compacted structure of concrete is achieved with the addition of bronze sawdust. Then higher density and strength values are obtained for concretes that are produced by bronze addition. In addition, concretes including bronze sawdust generally show higher toughness due to high plastic energy capacities than pure concrete.


2021 ◽  
Vol 13 (7) ◽  
pp. 1265
Author(s):  
Marco Loche ◽  
Gianvito Scaringi ◽  
Jan Blahůt ◽  
Maria Teresa Melis ◽  
Antonio Funedda ◽  
...  

The mechanical strength is a fundamental characteristic of rock masses that can be empirically related to a number of properties and to the likelihood of instability phenomena. Direct field acquisition of mechanical information on tall cliffs, however, is challenging, particularly in coastal and alpine environments. Here, we propose a method to evaluate the compressive strength of rock blocks by monitoring their thermal behaviour over a 24‐h period by infrared thermography. Using a drone‐mounted thermal camera and a Schmidt (rebound) hammer, we surveyed granitoid and aphanitic blocks in a coastal cliff in south‐east Sardinia, Italy. We observed a strong correlation between a simple cooling index, evaluated in the hours succeeding the temperature peak, and strength values estimated from rebound hammer test results. We also noticed different heatingcooling patterns in relation to the nature and structure of the rock blocks and to the size of thefractures. Although further validation is warranted in different morpho‐lithological settings, we believe the proposed method may prove a valid tool for the characterisation of non‐directly accessible rock faces, and may serve as a basis for the formulation, calibration, and validation of thermo‐hydro‐mechanical constitutive models.


2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Tuba Bahtlı ◽  
Nesibe Sevde Özbay

In this study, the effects of finely-milled bronze and waste tire on the mechanical properties of concrete have been investigated. Approximately 2.5% and 5% by weight for each additive (bronze sawdust and waste tire) were added to dry concrete. The open porosity, density, compressive strength values of cured concrete have been determined. In addition, the Schmidt rebound hammer (SRH) and the ultrasonic pulse velocity (UPV) tests, which are non-destructive test methods, were applied. The microstructure and fracture surfaces of these materials were characterized by scanning electron microscopy (SEM). It was observed that the density of pure concrete was 2.35 g/cm3 while the density was 2.19 g/cm3 for a C+5%B+5%T material. Similarly, pure concrete had an almost three times better compressive strength and a two times better SRH value than those of the C+5%B+5%T material. The density and mechanical properties of concrete materials containing bronze and waste tire decreased due to micro crack formations, weak bonding and deep cracks forming especially between the concrete and additives.


2019 ◽  
Vol 22 (1) ◽  
pp. 123-140
Author(s):  
Doris Vračević ◽  
Sanja Dugonjić Jovančević ◽  
Josip Peranić ◽  
Marko Hodanić

The most used parameter in rock engineering practice is the Uniaxial Compressive Strength (UCS). It is often estimated on the field or trough Index-to-strength conversion factors proposed by various researchers for a specific rock type. The research presented in the paper involved field estimation of Uniaxial Compressive Strength using Schmidt rebound hammer and Point Load laboratory testing on limestone rock samples. The results of the estimated UCS were compared to the Uniaxial Compression Strength laboratory testing results on limestone specimens taken from the same location, in order to compare corresponding UCS of limestone rocks. These results can contribute to better estimation of the local design parameters, when direct determination of the UCS in the laboratory is not possible, rather than adopting the values from around the world case studies.


Sign in / Sign up

Export Citation Format

Share Document