rebound hammer
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 41)

H-INDEX

9
(FIVE YEARS 3)

2021 ◽  
Vol 1197 (1) ◽  
pp. 012054
Author(s):  
Ragini Kondalkar ◽  
Nikhil H. Pitale ◽  
K.R. Dabhekar ◽  
D.P. Mase

Abstract In India there are infinite old structures that are at the verge of damages. There are many buildings which have reduced their strength due to time passes, due to deterioration of concrete from structural element, due to development of cracks. The structure is a combination of load carrying members, damages in members cause failure of structure and it is harmful for living beings. To prevent old structure from failure the technique is adopted know as Non-Destructive Testing (NDT). With the help of non-destructive testing auditing of an old structure is get easier. NDT examine the total health of an infrastructure in order to check strength and stability of building. NDT is a bunch of various testing consist of Ultrasonic pulse velocity test (UPV), Rebound hammer test (RHT), Half-cell test, etc. Conducting NDT on building and analyzing testing result decide to repair building as per IS code, technique like grouting, Retrofitting, etc. to increase strength and stability of building. In this project structural has to be done on old structure which is situated at Nagpur. Audit done by NDT consist of Ultra-sonic pulse velocity test, Rebound hammer test, Half-cell test. After analyzing all test result including visual inspection it is found that structure need to repair and retrofitted to make it safe and stable for all static loadings. Column jacketing also provide to structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
B. Ravali ◽  
K. Bala Gopi Krishna ◽  
D. Ravi Kanth ◽  
K. J. Brahma Chari ◽  
S. Venkatesa Prabhu ◽  
...  

Need of construction is increasing due to increase in population growth rate. The geopolymer concrete is eco-friendly than ordinary concrete. Current experimental investigation was conducted on ordinary and geopolymer concrete using nondestructive testing (NDT) tests like ultrasonic pulse velocity (UPV) test and rebound hammer (RH) test. Cube specimens of dimensions 150 mm × 150 mm × 150 mm are used to conduct these tests at 7, 14, and 28 days. Proportions considered for concrete are cement-fly ash-river sand (100-0-100% and 60-40-100%), cement-fly ash-robo sand (100-0-100% and 60-40-100%) whereas geopolymer concrete fly ash-metakaolin is taken in proportions of 100-0%, 60-40%, and 50-50%. Alkaline activators (sodium hydroxide and sodium silicate with molarity 12M) were used in preparing geopolymer concrete. The major objective of the current study is to obtain relation between compressive strength of concrete and UPV values.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5130
Author(s):  
Stefan Lamplmair ◽  
Oliver Zeman ◽  
Klaus Voit

In the case of fastenings on rock, as a result of the variability, it is quite difficult to make a preliminary assessment of the load-bearing capacity of rock as a base material. This paper therefore investigates which rock parameters next to an anchor position have an influence on the load-bearing capacity. For this purpose, tests are carried out on post-installed anchors in different lithologies in eastern Austria. It can be shown that the joint weathering has an influence on the load-bearing capacity of post-installed anchors and conclusions can be made about joint weathering by means of rebound hammer. Rebound values can therefore also be used to draw conclusions about the rock quality as a base material for post-installed anchors. Nevertheless, a combined optical assessment of the base material is recommended as an adequate method.


2021 ◽  
Vol 322 ◽  
pp. 23-27
Author(s):  
Petr Misák ◽  
Dalibor Kocáb ◽  
Petr Cikrle

Determining the compressive strength of concrete in the early stages of ageing has been an increasingly relevant topic in recent years, particularly with regard to the safe removal of formwork from a structure or its part. The compressive strength of concrete which designates safe removal of formwork without damaging the structure can be referred to as "stripping strength". It is undoubtedly beneficial to be able to determine the moment of safe formwork removal in a non-destructive manner, i.e. without compromising the structure. Modern rebound hammer test methods seem to be a suitable instrument with which it is possible to reduce the length of technological breaks associated with concrete ageing to a minimum, and consequently, reduce the total cost of the construction. However, the use of these methods presents a number of challenges. As many conducted experiments have shown, there is no single conversion relationship (regression model) between non-destructive rebound hammer test methods and compressive strength. It is therefore advisable to always create a unique conversion relationship for each individual concrete. In addition, it must be noted that conventional regression analysis methods operate with 50% reliability. In construction testing, however, the most common is the so-called characteristic value, which is defined as a 5% quantile. This value is therefore determined with 95% reliability. This paper describes the construction of a so-called "characteristic curve", which can be used to estimate the compressive strength of concrete in a structure using rebound hammer test methods with 95% reliability. Consequently, the values obtained from the characteristic curve can be easily used for practical applications.


2021 ◽  
Vol 40 (1) ◽  
pp. 16-27
Author(s):  
Moses Kongola ◽  
Karim Baruti

Rebound hammer test is widely used as an indirect measure of uniaxial compressive strength for engineering materials such as concrete, soil, and rock in both civil and mining engineering works. In quarries, uniaxial compressive strength is a crucial parameter in the analysis of geotechnical problems involving rock stability and rock blasting design. This study aims at establishing the empirical models of uniaxial compressive strength fits on rebound hammer number that can be used to predict uniaxial compressive strength of granitic rock at Lugoba Quarry. Data for direct uniaxial compressive strength were obtained from uniaxial compressive strength test carried out on 20 core samples at the Dar es Salaam Institute of Technology Geotechnical Laboratory using ISMR Standard Procedures. The rebound hammer test was carried out using testing hammer type N. The tests were done horizontally on two scanline's geotechnical domains of the rock mass on the footwall side of the quarry. The obtained results of UCS ranging from 105 to 132.5 MPa and RHN from 44.90 to 49.5 were found to be comparable with values of other granitic rocks in other parts of the world. Regression Analysis using SPSS software was carried out to develop 5 regression models of UCS vs.RHN. The values of obtained in this study were found to be between 0.93 and 0.95, which are comparable with other studies. This implies that RHN accounted between 93 and 95% of the total variation of the UCS and the relationships were very strong. Two models; Logarithmic and exponential were found to be appropriate and recommended for application at Lugoba Quarry.


2021 ◽  
Vol 34 (02) ◽  
pp. 710-732
Author(s):  
Behrouz Halimi ◽  
Hamidreza Saba ◽  
Saeid Jafari MehrAbadi ◽  
Saeid Saeidi Jam

Defining soil behavioral parameters, which eventually results in predicting every short-term and long-term soil behavior, has continually been one of the interests of soil mechanics and has been of exceptional value. To this end, in this study, a novel method has been reviewed to determine the compressive behavior of fine-grained soils in the laboratory and the field, without sampling by the patented electronic device. In the lab, homogeneous materials of the intended soil underwent the compaction test, mechanical and physical tests, direct shear test, and impacts of the innovative rebound hammer in the horizontal and vertical directions in the test-box. The impact shear waves produce resistance and voltage output by force and dislocation sensors with high-sensitivity proportional to the pressure based on the soil surface stiffness. The obtained voltages are then converted to digital by an analog-to-digital converter and a microcontroller. Next, a number is shown on display by the "CodeVision" program. Then, by solving a quasi-dynamic equation (Viscoelastic spring-damper model) by MATLAB software and with the aid of laboratory-field results and correlation equations, a fitting connection between all effective mechanical soil parameters has been estimated to an acceptable extent. The effective mechanical parameters of the soil include the compaction percentage, specific gravity, and frequency of the system in the damped and non-damped states, the energy imposed on the soil, and the plastic stage strain in the range of less than 15% humidity. The results determine that increased hammering numbers are directly related to increased soil compaction and stiffness. In more detail, the reading of hammer numbers less than 2 corresponds to compaction of less than 75%, while the reading of hammer numbers greater than 3 in the vertical and 2.94 in the horizontal directions on clay surfaces designates compaction of 90%.


This paper presents a definite exploratory investigation on penetrability qualities of granite powder (GP) concrete. The primary parameter researched in this investigation was M30 and M60 grades concrete with substitution of sand by GP of 0, 25,50 and 100 and concrete as fractional supplanting with super plasticiser, fly ash, slag and silica fume. The antacid arrangement utilized for present examination is the mix of sodium hydroxide and sodium silicate arrangement. The test example was 50 mm (thick) x 100 mm (diameter) cylinder shapes heat-relieved at 60°C in an oven. The variety was concentrated on the examples exposed to ambient air just as oven heat relieving. non-destructive tests on cylinders with the help of rebound hammer for a time of 28, 56, 90, 180 and 365 days. The test outcomes show that the substitution of rock and incomplete substitution of admixtures display better execution


2021 ◽  
Vol 13 (7) ◽  
pp. 1265
Author(s):  
Marco Loche ◽  
Gianvito Scaringi ◽  
Jan Blahůt ◽  
Maria Teresa Melis ◽  
Antonio Funedda ◽  
...  

The mechanical strength is a fundamental characteristic of rock masses that can be empirically related to a number of properties and to the likelihood of instability phenomena. Direct field acquisition of mechanical information on tall cliffs, however, is challenging, particularly in coastal and alpine environments. Here, we propose a method to evaluate the compressive strength of rock blocks by monitoring their thermal behaviour over a 24‐h period by infrared thermography. Using a drone‐mounted thermal camera and a Schmidt (rebound) hammer, we surveyed granitoid and aphanitic blocks in a coastal cliff in south‐east Sardinia, Italy. We observed a strong correlation between a simple cooling index, evaluated in the hours succeeding the temperature peak, and strength values estimated from rebound hammer test results. We also noticed different heatingcooling patterns in relation to the nature and structure of the rock blocks and to the size of thefractures. Although further validation is warranted in different morpho‐lithological settings, we believe the proposed method may prove a valid tool for the characterisation of non‐directly accessible rock faces, and may serve as a basis for the formulation, calibration, and validation of thermo‐hydro‐mechanical constitutive models.


2021 ◽  
Vol 879 ◽  
pp. 100-114
Author(s):  
Izwan B. Johari ◽  
Md Azlin Md Said ◽  
Mohd Amirul B. Mohd Snin ◽  
Nur Farah Aqilah Bt. Ayob ◽  
Nur Syafiqah Bt. Jamaluddin ◽  
...  

This paper investigates the effect of partial replacement of fly ash with sago pith waste ash and silica fume in fabricating the geopolymer mortar concrete. The mixtures of geopolymer mortar concrete were prepared by replacing sago pith waste ash and silica fume at 5% of total weight of fly ash. There were six specimens of geopolymer mortar cubes and bricks fabricated in this study. The specimens are tested with compressive strength test, rebound hammer test and ultrasonic pulse velocity test. The results from the tests are compared with some existing published works as to clarify the effect of replacing the fly ash with sago waste and silica fume on the strength of concrete. Comparisons had been made and concluded that the molarity of alkaline solution, Al3O2 and CaO influenced the development of compressive strength along the curing time of fly ash based geopolymer concrete.


Sign in / Sign up

Export Citation Format

Share Document