scholarly journals Air-entrainment as an alternative to polypropylene fibers and its effect on the compressive strength of concrete at high temperatures

Author(s):  
J Holan ◽  
J Novák ◽  
R Štefan
2018 ◽  
Vol 3 (1) ◽  
pp. 31
Author(s):  
Belaribi Hassiba ◽  
Mellas Mekki ◽  
Rahmani Fraid

The paper analyses the effects of high temperatures on the concrete residual strength using ultrasonic velocity (UPV). An experimental investigation was conducted to study the relationship between UPV residual data and compressive strength of concrete with different mixture proportions, cubic specimens with water-cement ratio of 0.35. They were heated in an electric furnace at temperatures ranging from 200°C to 600°C. In this experiment a comparison was made between the four groups which include two types of fibers steel 0,19%, 0,25% and 0,5%, polypropylene: 0,05%, 0,11% 0,16 % by volume. Cube specimens were tested in order to determine ultrasonic velocity. The compressive strength was tested too. According to the results, relations were established between ultrasonic velocity in the specimens and the compressive strength at different temperature and the range of the velocity of the waves were also determined for this kind of concrete. Result of the test showed that UPV test can be successfully used in order to verify the consistency of structures damaged by fire.


2020 ◽  
Vol 26 (1) ◽  
pp. 118-127
Author(s):  
Teuku Budi Aulia ◽  
Muttaqin Muttaqin ◽  
Mochammad Afifuddin ◽  
Zahra Amalia

High-strength concrete is vulnerable to high temperatures due to its high density. The use of polypropylene fibers could prevent structure explosion by forming canals due to melted fibers during fire, thus release its thermal stress. This study aims to determine the effect of polypropylene fibers on compressive strength of high-strength concrete after combustion at 400ºC for five hours. High-strength concrete was made by w/c-ratio 0.3 with cement amount 550 kg/m3 and added with silica fume 8% and superplasticizer 4% by cement weight. The variations of polypropylene fibers were 0%, 0.2% and 0.4% of concrete volume. The compression test was carried out on standard cylinders Ø15/30 cm of combustion and without combustion specimens at 7 and 28 days. The results showed that compressive strength of high-strength concretes without using polypropylene fibers decreased in post-combustion compared with specimens without combustion, i.e., 0.81% at 7 days and 23.42% at 28 days. Conversely, the use of polypropylene fibers can increase post-combustion compressive strength with a maximum value resulted in adding 0.2% which are 25.52% and 10.44% at 7 and 28 days respectively. It can be concluded that the use of polypropylene fibers is effective to prevent reduction of high-strength concrete compressive strength that are burned at high temperatures.


2020 ◽  
Vol 309 ◽  
pp. 62-67
Author(s):  
Kateřina Horníková ◽  
Marek Foglar

This paper presents the results of experimental program focused on change of compressive strength of concrete exposed to elevated temperature. The change of compressive strength was studied for several types of concrete with different properties (common concrete, air-entrained concrete, concrete with polypropylene fibres, high performance concrete with steel fibres and concrete with basalt fibres). The samples were exposed to high temperatures up to 1000 0C at, the compressive strength was measured at the elevated temperature. This paper presents results of this experiment and comparison of experimental results with available data from literature and valid Eurocodes.


Sign in / Sign up

Export Citation Format

Share Document