Hardness Variation in Driven Rivets for Bridge Evaluation

2018 ◽  
Vol 30 (10) ◽  
pp. 04018246 ◽  
Author(s):  
Matthew H. Hebdon ◽  
Ryan J. Sherman ◽  
Robert J. Connor
2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Renda Zhao ◽  
Yuan Yuan ◽  
Xing Wei ◽  
Ruili Shen ◽  
Kaifeng Zheng ◽  
...  

AbstractBridge construction is one of the cores of traffic infrastructure construction. To better develop relevant bridge science, this paper introduces the main research progress in China and abroad in 2019 from 13 aspects, including concrete bridges and the high-performance materials, the latest research on steel-concrete composite girders, advances in box girder and cable-supported bridge analysis theories, advance in steel bridges, the theory of bridge evaluation and reinforcement, bridge model tests and new testing techniques, steel bridge fatigue, wind resistance of bridges, vehicle-bridge interactions, progress in seismic design of bridges, bridge hydrodynamics, bridge informatization and intelligent bridge and prefabricated concrete bridge structures.


2021 ◽  
Vol 865 ◽  
pp. 158976
Author(s):  
Jianshen Wang ◽  
Daniel East ◽  
Evgeny V. Morozov ◽  
Aaron Seeber ◽  
Juan P. Escobedo-Diaz

2015 ◽  
Vol 101 ◽  
pp. 1016-1030 ◽  
Author(s):  
Azusa Watase ◽  
Recep Birgul ◽  
Shuhei Hiasa ◽  
Masato Matsumoto ◽  
Koji Mitani ◽  
...  

2014 ◽  
pp. 381-442
Author(s):  
Murugesu Vinayagamoorthy ◽  
Richard Tsang

Author(s):  
Achyuth Kothuru ◽  
Sai Prasad Nooka ◽  
Rui Liu

Machining industry has been evolving towards implementation of automation into the process for higher productivity and efficiency. Although many studies have been conducted in the past to develop intelligent monitoring systems in various application scenarios of machining processes, most of them just focused on cutting tools without considering the influence due to the non-uniform hardness of workpiece material. This study develops a compact, reliable, and cost-effective intelligent Tool Condition Monitoring (TCM) model to detect the cutting tool wear in machining of the workpiece material with hardness variation. The generated audible sound signals during the machining process will be analyzed by state of the art artificial intelligent techniques, Support Vector Machines (SVMs) and Convolutional Neural Networks (CNNs), to predict the tool condition and the hardness variation of the workpiece. A four-level classification model is developed for the system to detect the tool wear condition based on the width of the flank wear land and hardness variation of the workpiece. The study also involves comparative analysis between two employed artificial intelligent techniques to evaluate the performance of models in predicting the tool wear level condition and workpiece hardness variation. The proposed intelligent models have shown a significant prediction accuracy in detecting the tool wear and from the audible sound into the proposed multi-classification wear class in the end-milling process of non-uniform hardened workpiece.


2013 ◽  
Vol 838-841 ◽  
pp. 1126-1129
Author(s):  
Zhao Lan Wei ◽  
Guo Jun Liu ◽  
Zu Yin Zou

Each related index was compared in three specifications, including Fundamental code for design on railway bridge and culvert, Code for rating existing railway bridges, and Code for design of high speed railway. The reasons of the difference existed in indexes was revealed, especially between high speed railway bridge and normal speed railway bridge.


Sign in / Sign up

Export Citation Format

Share Document