Development and Mechanical Performance of Fire-Resistive Engineered Cementitious Composites

2019 ◽  
Vol 31 (5) ◽  
pp. 04019035 ◽  
Author(s):  
Guo Yang ◽  
Jiangtao Yu ◽  
Yi Luo
2013 ◽  
Vol 709 ◽  
pp. 122-126
Author(s):  
Heng Mao Niu ◽  
Yong Ming Xing ◽  
Yan Ru Zhao

Engineered cementitious composites (ECC) are characterized by strain hardening and tight crack width control. Good fiber distribution can maximize fiber contribution. Processing can substantially influence fiber distribution, and consequently influence mechanical performance. Combined with the latest research results, this review summarizes the results of several studies in which the influence of processing on fiber distribution and mechanical performance was investigated. Based on the reviewed methods it is argued that the processing technique of producing ECC can improve fiber distribution.


2021 ◽  
Vol 1200 (1) ◽  
pp. 012004
Author(s):  
M R Md Zain ◽  
C L Oh ◽  
L S Wee

Abstract Engineered cementitious composites (ECC) mixtures demand a large cement content, which is detrimental to their sustainable development because mass cement production is hazardous to the environment and human health. Thus, this paper investigates the mechanical performance of eco engineered cementitious composites (ECC) under axial compressive loading and direct tensile strength tests. The eco ECC used in this investigation was comprised of cement, superplasticizer, fly ash (FA) or ground granulated blast furnace slag (GGBS), polypropylene (PP) fibre, water and recycled concrete fines (RCF). Two (2) eco ECC mixture series were designed and prepared. GGBS70 (70 percent GGBS + 30 percent cement), FA70 (70 percent Fly Ash + 30 percent cement), GGBS80 (80 percent GGBS + 20 percent cement), and FA80 (80 percent Fly Ash + 20 percent cement) are the four Cement-GGBS and Cement-Fly Ash combinations examined in this study. Also every combination had two different RCF percentages, R0.2 (0.2 percent RCF) and R0.4 (0.4 percent RCF). The main objective of this research is to determine the optimum mix design for eco ECC that contains supplementary Cementitious Materials (SCMs) such as GGBS or FA. Additionally, recycled concrete fines (RCF) were used as a substitute for sand. The influence of different cement replacement materials and RCF content on compressive and tensile strength was experimentally investigated. The inclusion of GGBS as a partial replacement of cement in the eco concrete mixture results in greater compressive strength than Fly Ash (FA). The test results revealed that increasing the RCF content in the ECC mixture resulted in higher compressive and tensile strength. When the sand to binder ratio was adjusted between 0.2 and 0.4, the compressive and tensile strength of the ECC mixture increased.


Author(s):  
Shuaiyu Wang ◽  
Hongxiu Du ◽  
Jingjing Lv ◽  
Jun Guo ◽  
Guoyang Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document