Refined Model for the Stress-Strain Curve of Austenitic Stainless-Steel Materials at Elevated Temperatures

2020 ◽  
Vol 32 (4) ◽  
pp. 04020032
Author(s):  
Shenggang Fan ◽  
Runmin Ding ◽  
Jiacheng Zheng ◽  
Fuzhe Xie ◽  
Qixun Wu
2021 ◽  
Author(s):  
Adarsh Tripathi ◽  
Noopur Gupta ◽  
Ashok Kumar Singh ◽  
Nachiketa Rai ◽  
Anindya Pain

<p>The Jharia region of lower Gondwana in India is one of the largest Underground Coalmine Fires (UCF) affected coalfield in the world. The UCF induced small scale as well as large-scale surface fracturing often creates the life-threatening conditions to coal miners and local surroundings. So, there is a need to understand the thermomechanical behaviour of coal measures rocks to predict the land disturbances in thermo-environmental conditions. It will provide an insight into the UCF induced subsidence mechanism and its preventive measures. The Jharia coal field predominantly consists of sandstone (75-80% by volume) and rest is composed of coal, shale and carbonaceous shale. The present study focuses on thermo-mechanical behaviour of Barakar sandstone (BS) under elevated temperatures. The cores of BS sample were prepared according to the ISRM standards. Further, samples were grouped and thermally treated in temperature range of 25°C, 100°C, 150°C, 300°C, 400°C, 500°C, 600 °C, 700°C and 800°C at a heating rate of 5°C/min for 24 hours in furnace.  Then, these thermally treated BS samples were subjected to laboratory test for stress-strain characteristics. In the process of deformational characteristics evaluation, effect of mineralogical changes and mode of fracture pattern were also studied at the mentioned elevated temperature. Based on the obtained results, the deformational behaviour of thermally treated BS specimens can be grouped into three zones, viz., zone 1 (25-300°C), zone 2 (300-500°C) and zone 3 (500-800°C). In zone 1, the characteristics of the stress-strain curve is similar to those under air dried sandstone specimen. However, small increment in stiffness were observed upto 300°C. The stress-strain curves in this zone shows dominantly brittle fracturing. The increment in stiffness may be related to evaporation of pore water that increases the cohesion between the mineral grains resulting higher stiffness value. In zone 2, the deformation pattern again shows brittle fracturing with continuous decrement in stiffness. The reduction in stiffness may be related to thermally induced porosity and increased microcrack density. In zone 3, the stress strain curve is observed to be concave upward. It indicates the pseudo-ductile behaviour of the thermally treated BS specimens. The observed results suggest a typical behaviour of deformation pattern under UCF induced rock fracturing which may be useful in predicting the land subsidence in UCF affected areas. Present research outcome may be used to design the support measures to reduce the associated hazards.</p>


2010 ◽  
Vol 638-642 ◽  
pp. 3793-3798
Author(s):  
Wolfgang H. Müller ◽  
Holger Worrack ◽  
Jens Sterthaus

The fabrication of microelectronic and micromechanical devices leads to the use of only very small amounts of matter, which can behave quite differently than the corresponding bulk. Clearly, the materials will age and it is important to gather information on the (changing) material characteristics. In particular, Young’s modulus, yield stress, and hardness are of great interest. Moreover, a complete stress-strain curve is desirable for a detailed material characterization and simulation of a component, e.g., by Finite Elements (FE). However, since the amount of matter is so small and it is the intention to describe its behavior as realistic as possible, miniature tests are used for measuring the mechanical properties. In this paper two miniature tests are presented for this purpose, a mini-uniaxial-tension-test and a nanoindenter experiment. In the tensile test the axial load is prescribed and the corresponding extension of the specimen length is recorded, both of which determines the stress-strain- curve directly. The stress-strain curves are analyzed by assuming a non-linear relationship between stress and strain of the Ramberg-Osgood type and by fitting the corresponding parameters to the experimental data (obtained for various microelectronic solders) by means of a non-linear optimization routine. For a detailed analysis of very local mechanical properties nanoindentation is used, resulting primarily in load vs. indentation-depth data. According to the procedure of Oliver and Pharr this data can be used to obtain hardness and Young’s modulus but not a complete stress-strain curve, at least not directly. In order to obtain such a stress-strain-curve, the nanoindentation experiment is combined with FE and the coefficients involved in the corresponding constitutive equations for stress and strain are obtained by means of the inverse method. The stress-strain curves from nanoindentation and tensile tests are compared for two mate-rials (aluminum and steel). Differences are explained in terms of the locality of the measurement. Finally, material properties at elevated temperature are of particular interest in order to characterize the materials even more completely. We describe the setup for hot stage nanoindentation tests in context with first results for selected materials.


1967 ◽  
Vol 34 (1) ◽  
pp. 91-99 ◽  
Author(s):  
S. R. Bodner ◽  
R. J. Clifton

Experiments are reported involving elastic-plastic pulses due to explosive loading at one end of long, annealed, commercially pure, aluminum rods at room temperature and at elevated temperatures up to 750 deg F. The stress waves were detected by a condenser microphone at the far end of the rod and, in some cases, by strain gages at a cross section distant from the impact end. The essential features of the recorded velocity-time profiles and strain-time profiles are found to be in agreement with the predictions of rate independent elastic-plastic theory which takes a Bauschinger effect into account. At room temperature, the reference dynamic stress-strain curve does not differ appreciably from the quasi-static stress-strain curve whereas at elevated temperatures there appears to be a marked difference between the dynamic and quasi-static stress-strain curves. The experiments also serve to determine the dynamic proportional limit which is found to be fairly insensitive to temperature. Since the maximum plastic strains are small at cross sections remote from the impact end, the measurements, and consequently the conclusions, are limited to small strains beyond the proportional limit.


Sign in / Sign up

Export Citation Format

Share Document