Role of Rubber Crumbs on the Stress-Strain Response of a Coal Wash Matrix

2021 ◽  
Vol 33 (3) ◽  
pp. 04020480
Author(s):  
Miriam Tawk ◽  
Buddhima Indraratna
Author(s):  
joohyeon Lee

This study's objective was to propose the use of textile braiding manufacturing methods, thus facilitating the application of the high precision and accurate measurability of optical fiber Bragg grating sensors to various structures.The purpose of this study was to Combine 3d braid processing with the optical Bragg grating sensor's accurate metrology. Out of limits of the sensor's epoxy attachment methods, the textile braiding method can make applicable scope diversify. The braiding processing is capable of designing a 3D fabric module processing, multiple objective mechanical fiber arrangement, and material characteristics. Optical stress-strain response conditions were explored through the optimization of design elements between the Bragg grating sensor and braiding. For this study, Bragg grating sensors were located 75% apart from the fiber center. The sensor core structure is helical of 1.54 pitch. A polyurethane synthetic yarn was braided together with the sensor on the Weaving machine core part in a braiding.Prototyping results, a negative Poisson's ratio makes curled the braided Bragg grating sensor. The number of polyurethan string yarns has been conducted the role of wrap angle in braiding. The 12 strands condition showed an increase in double stress-strain response rate at a Poisson ratio of 1.3%, and 16 strands condition was found to affect the sensor with noise at a Poisson ratio of 1.5%. This study can suggest applying braid processing of the Bragg grating sensor, which is expected to create and develop a new monitoring sensor.


2005 ◽  
Vol 495-497 ◽  
pp. 1001-1006 ◽  
Author(s):  
Carlos Tomé ◽  
George C. Kaschner

Hexagonal materials deform plastically by activating diverse slip and twinning modes. The activation of such modes depends on their relative critical stresses, function of temperature and strain rate, and the orientation of the crystals with respect to the loading direction. For a constitutive description of these materials to be reliable, it has to account for texture evolution associated with twin reorientation, and for the effect of the twin barriers on dislocation propagation and on the stress-strain response. In this work we introduce a model for twinning which accounts explicitly for the composite character of the grain, formed by a matrix with embedded twin lamellae which evolve with deformation. Texture evolution takes place through reorientation due to slip and twinning. The role of the twins as barriers to dislocations is explicitly incorporated into the hardening description via a directional Hall-Petch mechanism. We apply this model to the interpretation of compression experiments both, monotonic and changing the loading direction, done in rolled Zr at 76K.


Author(s):  
Lee Joohyeon

This study's objective was to propose the use of textile braiding manufacturing methods, thus facilitating the application of the high precision and accurate measurability of optical fiber Bragg grating sensors to various structures. The purpose of this study was to Combine 3d braid processing with the optical Bragg grating sensor's accurate metrology. Out of limits of the sensor's epoxy attachment methods, the textile braiding method can make applicable scope diversify. The braiding processing is capable of designing a 3D fabric module processing, multiple objective mechanical fiber arrangement, and material characteristics. Optical stress-strain response conditions were explored through the optimization of design elements between the Bragg grating sensor and braiding. For this study, Bragg grating sensors were located 75% apart from the fiber center. The sensor core structure is helical of 1.54 pitch. A polyurethane synthetic yarn was braided together with the sensor on the Weaving machine core part in a braiding. Prototyping results, a negative Poisson's ratio makes curled the braided Bragg grating sensor. The number of polyurethane string yarns has been conducted the role of wrap angle in braiding. The 12 strands condition showed an increase in double stress-strain response rate at a Poisson ratio of 1.3%, and 16 strands condition was found to affect the sensor with noise at a Poisson ratio of 1.5%. This study can suggest applying braid processing of the Bragg grating sensor, which is expected to create and develop a new monitoring sensor.


1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


1990 ◽  
Vol 6 (2) ◽  
pp. 207-230 ◽  
Author(s):  
Han C. Wu ◽  
Paul T. Wang ◽  
W.F. Pan ◽  
Z.Y. Xu

2004 ◽  
Vol 41 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Dieter Stolle ◽  
Peijun Guo ◽  
Gabriel Sedran

This paper analyzes the impact of natural random variation of soil properties on the constitutive modelling of geomaterial behaviour. A theoretical framework for accommodating variation in soil properties is presented. The framework is then used to examine the consequence of parameter variability on stress–strain relations. An important observation is that average soil parameters from a series of tests on small specimens, in which density of the specimens varies randomly, do not necessarily reflect the average constitutive behaviour of soil. Model predictions are shown to be consistent with the experimental data.Key words: random variability, deterministic analysis, soil parameters, constitutive model.


Sign in / Sign up

Export Citation Format

Share Document