Influences on Compaction of Cold Mix Cement Emulsified Asphalt Using the Superpave Gyratory Compaction

2021 ◽  
Vol 33 (6) ◽  
pp. 04021107
Author(s):  
Xuepeng Cao ◽  
Cuihong Zhang ◽  
Shuaihua Tuo ◽  
Yao Fu ◽  
Tongchao Zhi ◽  
...  
2019 ◽  
Vol 26 (3) ◽  
pp. 759-767 ◽  
Author(s):  
Hui Wei ◽  
Xian-ping Bai ◽  
Fei-yue Wang ◽  
Wei Li ◽  
Jiao Jin

2019 ◽  
Author(s):  
Teng Man

The compaction of asphalt mixture is crucial to the mechanical properties and the maintenance of the pavement. However, the mix design, which based on the compaction properties, remains largely on empirical data. We found difficulties to relate the aggregate size distribution and the asphalt binder properties to the compaction behavior in both the field and laboratory compaction of asphalt mixtures. In this paper, we would like to propose a simple hybrid model to predict the compaction of asphalt mixtures. In this model, we divided the compaction process into two mechanisms: (i) visco-plastic deformation of an ordered thickly-coated granular assembly, and (ii) the transition from an ordered system to a disordered system due to particle rearrangement. This model could take into account both the viscous properties of the asphalt binder and grain size distributions of the aggregates. Additionally, we suggest to use the discrete element method to understand the particle rearrangement during the compaction process. This model is calibrated based on the SuperPave gyratory compaction tests in the pavement lab. In the end, we compared the model results to experimental data to show that this model prediction had a good agreement with the experiments, thus, had great potentials to be implemented to improve the design of asphalt mixtures.


Author(s):  
Kyle Hoegh ◽  
Trevor Steiner ◽  
Eyoab Zegeye Teshale ◽  
Shongtao Dai

Available methods for assessing hot-mix-asphalt pavements are typically restricted to destructive methods such as coring that damage the pavement and are limited in coverage. Recently, density profiling systems (DPS) have become available with the capability of measuring asphalt compaction continuously, giving instantaneous measurements a few hundred feet behind the final roller of the freshly placed pavement. Further developments of the methods involved with DPS processing have allowed for coreless calibration by correlating dielectric measurements with asphalt specimens fabricated at variable air void contents using superpave gyratory compaction. These developments make DPS technology an attractive potential tool for quality control because of the real-time nature of the results, and quality assurance because of the ability to measure a more statistically significant amount of data as compared with current quality assurance methods such as coring. To test the viability of these recently developed methods for implementation, multiple projects were selected for field trials. Each field trial was used to assess the coreless calibration prediction by comparing with field cores where dielectric measurements were made. Ground truth core validation on each project showed the reasonableness of the coreless calibration method. The validated dielectric to air void prediction curves allowed for assessment of the tested pavements in relation to as-built characteristics, with the DPS providing the equivalent of approximately 100,000 cores per mile. Statistical measures were used to demonstrate how DPS can provide a comprehensive asphalt compaction evaluation that can be used to inform construction-related decisions and has potential as a future quality assurance tool.


2021 ◽  
Vol 279 ◽  
pp. 122479
Author(s):  
Shunjun Jiang ◽  
Jiusu Li ◽  
Zhu Zhang ◽  
Hongshan Wu ◽  
Guanlan Liu

Sign in / Sign up

Export Citation Format

Share Document