Probabilistic Life-Cycle Management Framework for Ship Structures Subjected to Coupled Corrosion–Fatigue Deterioration Processes

2019 ◽  
Vol 145 (10) ◽  
pp. 04019116 ◽  
Author(s):  
Xu Han ◽  
David Y. Yang ◽  
Dan M. Frangopol
Inventions ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 71 ◽  
Author(s):  
Vrettos Moulos ◽  
George Chatzikyriakos ◽  
Vassilis Kassouras ◽  
Anastasios Doulamis ◽  
Nikolaos Doulamis ◽  
...  

In modern societies, the rampant growth of the Internet, both on the technological and social level, has created fertile ground for the emergence of new types of risk. On top of that, it enhances pre-existing threats by offering new means for accessing and exploiting Critical Infrastructures. As the kinds of potential threats evolve, the security, safety and resilience of these infrastructures must be updated accordingly, both at a prevention, as well as a real-time confrontation level. Our research approaches the security of these infrastructures with a focus on the data and utilization of every possible piece of information that derives from this ecosystem. Such a task is quite daunting, since the quantity of data that requires processing resides in the Big Dataspace. To address this, we introduce a new well-defined Information Life Cycle in order to properly model and optimise the way information flows through a modern security system. This life cycle covers all the possible stages, starting from the collection phase up until the exploitation of information intelligence. That ensures the efficiency of data processing and filtering while increasing both the veracity and validity of the final outcome. In addition, an agile Framework is introduced that is optimised to take full advantage of the Information Life Cycle. As a result, it exploits the generated knowledge taking the correct sequence of actions that will successfully address possible threats. This Framework leverages every possible data source that could provide vital information to Critical Infrastructures by performing analysis and data fusion being able to cope with data variety and variability. At the same time, it orchestrates the pre-existing processes and resources of these infrastructures. Through rigorous testing, it was found that response time against hazards was dramatically decreased. As a result, this Framework is an ideal candidate for strengthening and shielding the infrastructures’ resilience while improving management of the resources used.


Improving the efficiency of life cycle management of capital construction projects using information modeling technologies is one of the important tasks of the construction industry. The paper presents an analysis of accumulated domestic practices, including the legal and regulatory framework, assessing the effectiveness of managing the implementation of investment construction projects and of complex and serial capital construction projects, as well as the life cycle management of especially dangerous technically complex and unique capital construction projects using information modeling technologies, especially capital construction projects, as well as their supporting and using systems, primarily in the nuclear and transport sectors. A review of modern approaches to assessing the effectiveness of life cycle management systems of complex engineering systems in relation to capital construction projects is carried out. The presented material will make it possible to formulate the basic principles and prospects of applying approaches to assessing the effectiveness of the life cycle management system of a capital construction project using information modeling technologies.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Sign in / Sign up

Export Citation Format

Share Document