Investigating the Sensitivity of U.S. Streamflow and Water Quality to Climate Change: U.S. EPA Global Change Research Program’s 20 Watersheds Project

2012 ◽  
Vol 138 (5) ◽  
pp. 453-464 ◽  
Author(s):  
T. E. Johnson ◽  
J. B. Butcher ◽  
A. Parker ◽  
C. P. Weaver
PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251489
Author(s):  
Patrick A. Breach ◽  
Slobodan P. Simonovic

The ANEMI model is an integrated assessment model of global change that emphasizes the role of water resources. The model is based on the principles of system dynamics simulation to analyze changes in the Earth system using feedback processes. Securing water resources for the future is a key issue of global change, and ties into global systems of population growth, climate change, carbon cycle, hydrologic cycle, economy, energy production, land use and pollution generation. Here the third iteration of the model–ANEMI3 is described, along with the methods used for parameter estimation and model testing. The main differences between ANEMI3 and previous versions include: (i) implementation of the energy-economy system based on the principles of system dynamics simulation; (ii) incorporation of water supply as an additional sector in the global economy that parallels the production of energy; (iii) inclusion of climate change effects on land yield and potentially arable land for food production, and (iv) addition of nitrogen and phosphorus based nutrient cycles as indicators of global water quality, which affect the development of surface water supplies. The model is intended for analyzing long-term global feedbacks which drive global change. Because of this, there are limitations related to the spatial scale that is used. However, the model’s simplicity can be considered a strength, as it allows for the driving feedbacks to be more easily identified. The model in its current form allows for a variety of scenarios to be created to address global issues such as climate change from an integrated perspective, or to examine the change in one model sector on Earth system behaviour. The endogenous structure of the model allows for global change to be driven entirely by model structure rather than exogenous inputs. The new additions to the ANEMI3 model are found to capture long term trends associated with global change, while allowing for the development of water supplies to be represented using an integrated approach considering global economy and surface water quality.


2021 ◽  
Author(s):  
Rebecca J Wilson ◽  
Alexandre F de Siqueira ◽  
Stephen J Brooks ◽  
Benjamin W Price ◽  
Lea M Simon ◽  
...  

Natural history collections (NHCs) are invaluable resources for understanding biotic response to global change. Museums around the world are currently imaging specimens, capturing specimen data, and making them freely available online. In parallel to the digitisation effort, there have been great advancements in computer vision (CV): the computer trained automated recognition/detection, and measurement of features in digital images. Applying CV to digitised NHCs has the potential to greatly accelerate the use of NHCs for biotic response to global change research. In this paper, we apply CV to a very large, digitised collection to test hypotheses in an established area of biotic response to climate change research: temperature-size responses. We develop a CV pipeline (Mothra) and apply it to the NHM iCollections of British butterflies (>180,000 specimens). Mothra automatically detects the specimen in the image, sets the scale, measures wing features (e.g., forewing length), determines the orientation of the specimen (pinned ventrally or dorsally), and identifies the sex. We pair these measurements and meta-data with temperature records to test how adult size varies with temperature during the immature stages of species and to assess patterns of sexual-size dimorphism across species and families. Mothra accurately measures the forewing lengths of butterfly specimens and compared to manual baseline measurements, Mothra accurately determines sex and forewing lengths of butterfly specimens. Females are the larger sex in most species and an increase in adult body size with warm monthly temperatures during the late larval stages is the most common temperature size response. These results confirm suspected patterns and support hypotheses based on recent studies using a smaller dataset of manually measured specimens. We show that CV can be a powerful tool to efficiently and accurately extract phenotypic data from a very large collection of digital NHCs. In the future, CV will become widely applied to digital NHC collections to advance ecological and evolutionary research and to accelerate the use of NHCs for biotic response to global change research.


2017 ◽  
Author(s):  
Emily K. Meineke ◽  
Charles C. Davis ◽  
T. Jonathan Davies

AbstractPlant and fungal specimens in herbaria are becoming primary resources for investigating how plant phenology and geographic distributions shift with climate change, greatly expanding inferences across spatial, temporal, and phylogenetic dimensions. However, these specimens contain a wealth of additional data—including nutrients, defensive compounds, herbivore damage, disease lesions, and signatures of physiological processes—that capture ecological and evolutionary responses to the Anthropocene but which are less frequently utilized. Here, we outline the diversity of herbarium data, global change topics to which they have been applied, and new hypotheses they could inform. We find that herbarium data have been used extensively to study impacts of climate change and invasive species, but that such data are less commonly used to address other drivers of biodiversity loss, including habitat conversion, pollution, and overexploitation. In addition, we note that fungal specimens are under-explored relative to vascular plants. To facilitate broader application of plant and fungal specimens in global change research, we outline the limitations of these data and modern sampling and statistical tools that may be applied to surmount challenges they present. Using a case study of insect herbivory, we illustrate how novel herbarium data may be employed to test hypotheses for which few data exist, despite potentially large biases. With the goal of positioning herbaria as hubs for global change research, we suggest future research directions and curation priorities.


Sign in / Sign up

Export Citation Format

Share Document